
- •Второе издание удостоено государственной прем!* ссср
- •Кристалла — дислокация
- •В чет состоят основные представления о строении вещества?
- •Классификация материалов £ помощью зонной теории твердого тела и по магнитным свойствам.
- •3. Основные виды поляризации диэлектриков
- •4. Классификация диэлектриков по виду поляризации
- •5. Диэлектрическая проницаемость газов
- •Показатель преломления и диэлектрическая проницаемость некоторых газов
- •3). Число молекул n пропорционально давлению и обратно пропорционально абсолютной температуре.
- •6. Диэлектрическая проницаемость жидких диэлектриков
- •Диэлектрическая проницаемость и ее температурный коэффициент для неполярных и слабополярных жидкостей
- •Жидкости — совола
- •7. Диэлектрическая проницаемость твердых диэлектриков
- •Диэлектрическая проницаемость и показатель преломления некоторых неполярных твердых диэлектриков при температуре 20 “с
- •Значение ег и тк ег ионных кристаллов при температуре 20 °с
- •Различных частотах Значение ег неорганических стекол и органических полярных диэлектриков при 20 °с
- •Сегнетова соль 500—600 Титанат бария 1500—2000 Титанат бария с добавками . . 7000—9000
- •Электропроводность диэлектриков
- •2. Электропроводность газов
- •3 . Электропроводность жидкостей
- •4. Электропроводность твердых тел
- •Натриевый пирекс .... 2-10е Калиевый пирекс 8109 Свинцовое стекло 2-1010
- •5. Поверхностная электропроводность твердых диэлектриков
- •Удельное поверхностное сопротивление некоторых материалов при относительной влажности, равной 70 %
- •Основные механизмы электропроводности газов, диэлектрических жидкостей и твердых диэлектриков.
- •Чем обусловливается поверхностная электропроводность твердых диэлектриков?
- •1. Основные понятия
- •2. Виды диэлектрических потерь в электроизоляционных материалах
- •3. Диэлектрические потери в газах
- •4. Диэлектрические потери в жидких диэлектриках
- •Жидкости
- •5. Диэлектрические потери в твердых диэлектриках
- •Частотах
- •Температуре 50 °с)
- •Температуры
- •2. Пробой газов
- •4. Пробой твердых диэлектриков
- •Электрический пробой макроскопически однородных диэлектриков.
- •Электрическая прочность некоторых твердых диэлектриков в однородном поле при частоте 50 Гц
- •5. Тепловой и электрохимический пробой твердых диэлектриков
- •В чем различие в терминах: пробивное напряжение и электрическая прочность материала?
- •Каковы механизмы пробоя газоп, жидкостей и твердых тел?
- •Выведите выражение для пробивного напряжения при тепловом пробое по упрощенной теории н. II. Семенова и в. А. Фока.
- •"‘Нас Риас
- •Чиваемой поверхности (б)
- •Воздуха и температуры
- •Церезин 1,5-10'19 Полистирол 6,2-10"1?1- Триацетат целлюлозы . . . 2,ь10-в
- •Температурные коэффициенты линейного расширения некоторых диэлектриков
- •4. Химические свойства диэлектриков и воздействие на материалы излучений высокой энергии
- •Какие физико-химические и механические свойства диэлектриков необходимо учитывать при эксплуатации материалов?
- •Какие из этих свойств являются специфическими для диэлектриков?
- •К чему сводится влияние на диэлектрики излучений высокой энергии?
- •5. Общие сведения об органических полимерах
- •— Кремнийорганический; 6 — полиимидный
- •Р /v5 ис. 6-17. Схема установки для пропитки с применением вакуума и давления
- •Различных частотах
- •Мв/м при переменном напряжении частоты 50 Гц.
- •75 МПа, удельная ударная вязкость 20—
- •Изоляции на провод
- •Корпус; 8 — подвод воды для охлаждения червяка; 9 — слив воды
- •Из полиэтилена
- •Свойства гетииакса марок I и V, текстолита марки б и стеклотекстолита марки стэф (образцы толщиной более 10 мм)
- •6Текловолокно
- •18. Слюда и слюдяные материалы
- •(В % по массе)
- •Диаметра провода о
- •Охлаждении
- •Параметры некоторых сверхпроводкнксвых материалов
- •Изменение удельного сопротивления алюминия различной чистоты
- •5. Различные сплавы, припои, неметаллические проводники
- •Растворять и удалять оксиды и загрязнения с поверхности спаиваемых металлов;
- •Защищать в процессе пайки поверхность металла, а также расплавленный припой от окисления; 3) уменьшать поверхностное натяжение расплавленного припоя и смачиваемость им соединяемых поверхностей.
- •2. Электропроводность полупроводников
- •I I I I I I лической решетки германия: а — без примесей;
- •Р Тх Тип р Тг Тх Тип п % б) ис. 8-3. Определение типа электропроводности полупроводников: а — при помощи эффекта Холла; б — при помощи нагрева одного из концов испытуемого полупроводника
- •4. Элементы, обладающие свойствами полупроводников
- •От температуры
- •С воздушным охлаждением
- •От температуры
- •5. Полупроводниковые химические соединения и материалы на их основе
- •Свойства полупроводниковых соединений типа ашву
- •В кристалле
- •С магнитным сердечником
- •Точки компенсации (б)
- •Плотность и удельное сопротивление электротехнической стали в зависимости от содержания кремния
- •Предельное значение удельных потерь и магнитной •индукции электротехнической стали класса 2
- •Предельное значение удельных потерь и магнитной индукции электротехнической стали класса 3
- •Свойства железоникелевых сплавов (пермаллоев) после термической обработки
- •Проницаемостью
- •Состав и свойства мартенситных сталей для постоянных магнитов
- •Магнитные свойства магнитов из феррита бария н феррита кобальта
Чиваемой поверхности (б)
Рис. 5-3. Изменение влажности образца материала при увлажнении (кривая /) и сушке (кривая 2) для постоянных значений относительной влажности окружающего
Воздуха и температуры
времени т будет повышаться, асимптотически приближаясь к равновесной влажности ^р, соответствующей данному значению ср (рис. 5-3 , кривая /). Наоборот, если в воздухе той же относительной влажности ф будет помещен образец того же материала с начальной влажностью, большей \|)р, то влажность образца будет уменьшаться, асимптотически приближаясь к равновесной влажности х|?р; в этом случае происходит сушка материала (кривая 2). Для различных материалов значения равновесной влажности при одном и том же значении относительной влажности воздуха ф могут быть весьма различны. Определение влажности электроизоляционных материалов важно для уточнения условий, при которых производится испытание электрических свойств данного материала. Кроме того, определение влажности гигроскопичных материалов, приемка и сдача которых происходит по массе, важно для их строгого учета. Для текстильных материалов устанавливается так называемая кондиционная влажность, соответствующая равновесной влажности материала при нахождении его в воздухе в нормальных условиях; так, для кабельной бумаги кондиционная влажность принимается равной 8 %. На гигроскопичность материала существенное влияние оказывает его строение, наличие и размер капиллярных промежутков внутри материала, в которые проникает влага. Сильно пористые материалы, в частности волокнистые, более гигроскопичны, чем материалы плотного строения.
Приводим ориентировочные размеры пор (в нанометрах), встречающихся в различных электроизоляционных материалах:
М
102—105
100
1—10
1—5
<1
икропоры в керамикеКапилляры в волокнах целлюлозы
Поры в стенках волокна
Межмолекулярные поры различных материа-
лов
Внутримолекулярные поры
Для сравнения укажем, что эффективный диаметр молекулы воды равен примерно 0,27 нм, поэтому маленькие по размерам молекулы воды могут проникать даже во внутримолекулярные поры целлюлозных электроизоляционных материалов.
Определяемая по увеличению массы увлажняемого образца гигроскопичность хотя и дает некоторое представление о способности материала поглощать влагу, но не полностью отражает степень изменения электрических свойств этого материала при увлажнении. В том случае, если поглощенная влага способна образовать нити или пленки по толщине изоляции, которые могут пронизывать весь промежуток между электродами (или значительную область этого промежутка), уже весьма малые количества поглощенной влаги приводят к резкому ухудшению электрических свойств изоляции. Если же влага распределяется по объему материала в виде отдельных, не соединяющихся между собой малых включений, то влияние влаги на электрические свойства материала менее существенно.
Наиболее заметное снижение удельного объемного сопротивления под влиянием влажности наблюдается у пористых материалов, со-
Рис. 5-4. Зависимость от температуры удельного объемного сопротивления влажного образца материала, содержащего электролитические примеси
д
ержащих
растворимые в воде примеси, создающие
электролиты с высокой удельной
проводимостью. Для подобных материалов
получается интересная зависимость
р влажного образца от температуры,
показанная на рис. 5-4.
При нагревании влажного образца вначале р падает за счет увеличения степени диссоциации примесей в водном растворе (до точки А), затем идет удаление влаги — сушка (участок А Б) и только при более высоких температурах наблюдается снижение р по законам, приведенным в гл. 2.
При переменном напряжении наиболее чувствительным параметром пористых диэлектриков является б, заметно возрастающий с увлажнением материала. Менее чувствительна величина 8., однако и она, как правило, увеличивается с поглощением влаги ввиду большого значения диэлектрической проницаемости воды по сравнению с другими диэлектриками (для воды ег я; 80). Поэтому в ряде случаев о гигроскопичности материала судят по увеличению электрической емкости образца под действием влажности.
Влагопроницаемость. Кроме гигроскопичности, большое практическое значение имеет влагопроницаемость электроизоляционных материалов, т. е. способность их пропускать сквозь себя пары воды. Эта характеристика чрезвычайно важна для оценки качества материалов, применяемых для защитных покровов (шланги кабелей, опрессовка конденсаторов, компаундные заливки, лаковые покрытия деталей). Благодаря наличию мельчайшей пористости большинство материалов обладает поддающейся измерению влагопроницаемостью. Только для стекол, хорошо обожженной керамики и металлов влагопроницаемость практически равна нулю.
Количество влаги т, проходящее за время т сквозь участок поверхности 5 слоя изоляционного материала толщиной /г под действием разности давлений водяных паров рг и р2 с двух сторон слоя, равно
т = П (р1 — рг)Бт/А. (5-2)
Это уравнение аналогично уравнению, описывающему прохождение сквозь тело электрического тока: разность давлений р1 — р% аналогична разности потенциалов, /л/т — току, а /г/П5 — сопротивлению тела; коэффициент П, аналогичный удельной объемной проводимости, есть влагопроницаемость данного материала. В системе СИ он измеряется в секундах;
Пкг-м
кг-мм2
Для различных материалов влагопроницаемость изменяется в широких пределах!
П, с