
- •Второе издание удостоено государственной прем!* ссср
- •Кристалла — дислокация
- •В чет состоят основные представления о строении вещества?
- •Классификация материалов £ помощью зонной теории твердого тела и по магнитным свойствам.
- •3. Основные виды поляризации диэлектриков
- •4. Классификация диэлектриков по виду поляризации
- •5. Диэлектрическая проницаемость газов
- •Показатель преломления и диэлектрическая проницаемость некоторых газов
- •3). Число молекул n пропорционально давлению и обратно пропорционально абсолютной температуре.
- •6. Диэлектрическая проницаемость жидких диэлектриков
- •Диэлектрическая проницаемость и ее температурный коэффициент для неполярных и слабополярных жидкостей
- •Жидкости — совола
- •7. Диэлектрическая проницаемость твердых диэлектриков
- •Диэлектрическая проницаемость и показатель преломления некоторых неполярных твердых диэлектриков при температуре 20 “с
- •Значение ег и тк ег ионных кристаллов при температуре 20 °с
- •Различных частотах Значение ег неорганических стекол и органических полярных диэлектриков при 20 °с
- •Сегнетова соль 500—600 Титанат бария 1500—2000 Титанат бария с добавками . . 7000—9000
- •Электропроводность диэлектриков
- •2. Электропроводность газов
- •3 . Электропроводность жидкостей
- •4. Электропроводность твердых тел
- •Натриевый пирекс .... 2-10е Калиевый пирекс 8109 Свинцовое стекло 2-1010
- •5. Поверхностная электропроводность твердых диэлектриков
- •Удельное поверхностное сопротивление некоторых материалов при относительной влажности, равной 70 %
- •Основные механизмы электропроводности газов, диэлектрических жидкостей и твердых диэлектриков.
- •Чем обусловливается поверхностная электропроводность твердых диэлектриков?
- •1. Основные понятия
- •2. Виды диэлектрических потерь в электроизоляционных материалах
- •3. Диэлектрические потери в газах
- •4. Диэлектрические потери в жидких диэлектриках
- •Жидкости
- •5. Диэлектрические потери в твердых диэлектриках
- •Частотах
- •Температуре 50 °с)
- •Температуры
- •2. Пробой газов
- •4. Пробой твердых диэлектриков
- •Электрический пробой макроскопически однородных диэлектриков.
- •Электрическая прочность некоторых твердых диэлектриков в однородном поле при частоте 50 Гц
- •5. Тепловой и электрохимический пробой твердых диэлектриков
- •В чем различие в терминах: пробивное напряжение и электрическая прочность материала?
- •Каковы механизмы пробоя газоп, жидкостей и твердых тел?
- •Выведите выражение для пробивного напряжения при тепловом пробое по упрощенной теории н. II. Семенова и в. А. Фока.
- •"‘Нас Риас
- •Чиваемой поверхности (б)
- •Воздуха и температуры
- •Церезин 1,5-10'19 Полистирол 6,2-10"1?1- Триацетат целлюлозы . . . 2,ь10-в
- •Температурные коэффициенты линейного расширения некоторых диэлектриков
- •4. Химические свойства диэлектриков и воздействие на материалы излучений высокой энергии
- •Какие физико-химические и механические свойства диэлектриков необходимо учитывать при эксплуатации материалов?
- •Какие из этих свойств являются специфическими для диэлектриков?
- •К чему сводится влияние на диэлектрики излучений высокой энергии?
- •5. Общие сведения об органических полимерах
- •— Кремнийорганический; 6 — полиимидный
- •Р /v5 ис. 6-17. Схема установки для пропитки с применением вакуума и давления
- •Различных частотах
- •Мв/м при переменном напряжении частоты 50 Гц.
- •75 МПа, удельная ударная вязкость 20—
- •Изоляции на провод
- •Корпус; 8 — подвод воды для охлаждения червяка; 9 — слив воды
- •Из полиэтилена
- •Свойства гетииакса марок I и V, текстолита марки б и стеклотекстолита марки стэф (образцы толщиной более 10 мм)
- •6Текловолокно
- •18. Слюда и слюдяные материалы
- •(В % по массе)
- •Диаметра провода о
- •Охлаждении
- •Параметры некоторых сверхпроводкнксвых материалов
- •Изменение удельного сопротивления алюминия различной чистоты
- •5. Различные сплавы, припои, неметаллические проводники
- •Растворять и удалять оксиды и загрязнения с поверхности спаиваемых металлов;
- •Защищать в процессе пайки поверхность металла, а также расплавленный припой от окисления; 3) уменьшать поверхностное натяжение расплавленного припоя и смачиваемость им соединяемых поверхностей.
- •2. Электропроводность полупроводников
- •I I I I I I лической решетки германия: а — без примесей;
- •Р Тх Тип р Тг Тх Тип п % б) ис. 8-3. Определение типа электропроводности полупроводников: а — при помощи эффекта Холла; б — при помощи нагрева одного из концов испытуемого полупроводника
- •4. Элементы, обладающие свойствами полупроводников
- •От температуры
- •С воздушным охлаждением
- •От температуры
- •5. Полупроводниковые химические соединения и материалы на их основе
- •Свойства полупроводниковых соединений типа ашву
- •В кристалле
- •С магнитным сердечником
- •Точки компенсации (б)
- •Плотность и удельное сопротивление электротехнической стали в зависимости от содержания кремния
- •Предельное значение удельных потерь и магнитной •индукции электротехнической стали класса 2
- •Предельное значение удельных потерь и магнитной индукции электротехнической стали класса 3
- •Свойства железоникелевых сплавов (пермаллоев) после термической обработки
- •Проницаемостью
- •Состав и свойства мартенситных сталей для постоянных магнитов
- •Магнитные свойства магнитов из феррита бария н феррита кобальта
4. Пробой твердых диэлектриков
Различают четыре вида пробоя твердых диэлектриков:
электрический пробой макроскопически однородных диэлектриков;
электрический пробой неоднородных диэлектриков;
тепловой (электротепловой) пробой;
электрохимический пробой.
Каждый из указанных видов пробоя может иметь место для одного и того же материала в зависимости от характера электрического поля (постоянного или переменного, импульсного, низкой или высокой частоты), наличия в диэлектрике дефектов, в частности закрытых пор, от условий охлаждения, времени воздействия напряжения.
Электрический пробой макроскопически однородных диэлектриков.
Этот вид пробоя характеризуется весьма быстрым развитием, он протекает за время, меньшее 10-7—10"8 с, и не обусловлен тепловой
Р
ис.
4-8 Рис. 4-9
Рис. 4-8. Зависимость пробивного напряжения от толщины при 50 Гц для одного из сортов технического стекла 1 — однородное поле; 2 — резко неоднородное поле
Рис. 4-9. Зависимость пробивного напряжения от толщины при 50 Гц для электротехнического фарфора
энергией, хотя электрическая прочность при электрическом пробое в некоторой степени зависит от температуры.
Электрический пробой по своей природе является чисто электронным процессом, когда из немногих начальных электронов в твердом теле создается электронная лавина. Электроны рассеивают энергию своего движения, накопленную в электрическом поле, возбуждая упругие колебания кристаллической решетки. Электроны, достигшие определенной критической скорости, производят отщепление новых электронов, и стационарное состояние нарушается, т. е. возникает ударная ионизация электронами в твердом теле.
Чисто электрический пробой имеет место, когда исключено влияние электропроводности и диэлектрических потерь, обусловливающих нагрев материала, а также отсутствует ионизация газовых включений. Для однородного поля и полной однородности структуры материала напряженность поля при электрическом пробое может служить мерой электрической прочности вещества. Такие условия удается наблюдать для монокристаллов щелочно-галоидных соединений и некоторых органических полимеров. В этом случае Еп{> достигает сотен мегавольт на метр и более.
Для однородных материалов наблюдается заметная разница между значениями пробивного напряжения в однородном и неоднородном полях (рис. 4-8).
Электрический пробой неоднородных диэлектриков. Такой пробой характерен для технических диэлектриков, содержащих газовые включения, и так же, как и электрический пробой однородного диэлектрика, весьма быстро развивается.
Пробивные напряжения для неоднородных диэлектриков, находящихся во внешнем однородном или неоднородном поле, как правило, невысоки и мало отличаются друг от друга (рис. 4-9).
3
67
*Рис. 4-10. Зависимость электрической прочности электротехнического фарфора от температуры при / = 50 Гц А — область электрического пробоя; В—.область теплового пробоя
П
Епр. |
дейсг |
16 |
|
|
|
|
А |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
N |
|
|
|
|
|
г |
т/м
зо
20
0 20 40 60 80 100 °С
ю
ринято считать, что в однородном поле электрическая прочность стекол, фарфора и других твердых диэлектриков не зависит от толщины образца. Однако основные работы по изучению влияния степени однородности поля на электрическую прочность проводились лишь со стеклом при очень малых толщинах образцов — от 0,05 до 0,2— 0,5 мм, когда число дефектов невелико. Из рис. 4-8 и 4-9 видно, что с увеличением толщины образца усиливается неоднородность структуры, возрастает число газовых включений и снижаются электрические прочности как в однородном, так и в неоднородном поле. Иногда на опыте можно наблюдать, что электрическая прочность керамики при электродах, создающих внешнее неоднородное поле, будет даже выше, чем при электродах, обеспечивающих однородное поле. Так, электрическая прочность образцов рутиловой керамики толщиной 1,6—1,7 мм при постоянном напряжении для электродов игла — плоскость составляет примерно 24 МВ/м, а для плоских электродов —всего 12,5—15 МВ/м.Из этого следует, что чем меньше площадь электродов, тем выше может быть значение электрической прочности керамических материалов вследствие уменьшения числа инородных включений, попадающих в пределы поля, хотя поле в этом случае резко неоднородное. Снижение электрической прочности твердых диэлектриков при увеличении площади электродов наблюдается не только у керамики, но и у других материалов: бумаги, картона, лакотканей.
Таблица 4-1