
- •Второе издание удостоено государственной прем!* ссср
- •Кристалла — дислокация
- •В чет состоят основные представления о строении вещества?
- •Классификация материалов £ помощью зонной теории твердого тела и по магнитным свойствам.
- •3. Основные виды поляризации диэлектриков
- •4. Классификация диэлектриков по виду поляризации
- •5. Диэлектрическая проницаемость газов
- •Показатель преломления и диэлектрическая проницаемость некоторых газов
- •3). Число молекул n пропорционально давлению и обратно пропорционально абсолютной температуре.
- •6. Диэлектрическая проницаемость жидких диэлектриков
- •Диэлектрическая проницаемость и ее температурный коэффициент для неполярных и слабополярных жидкостей
- •Жидкости — совола
- •7. Диэлектрическая проницаемость твердых диэлектриков
- •Диэлектрическая проницаемость и показатель преломления некоторых неполярных твердых диэлектриков при температуре 20 “с
- •Значение ег и тк ег ионных кристаллов при температуре 20 °с
- •Различных частотах Значение ег неорганических стекол и органических полярных диэлектриков при 20 °с
- •Сегнетова соль 500—600 Титанат бария 1500—2000 Титанат бария с добавками . . 7000—9000
- •Электропроводность диэлектриков
- •2. Электропроводность газов
- •3 . Электропроводность жидкостей
- •4. Электропроводность твердых тел
- •Натриевый пирекс .... 2-10е Калиевый пирекс 8109 Свинцовое стекло 2-1010
- •5. Поверхностная электропроводность твердых диэлектриков
- •Удельное поверхностное сопротивление некоторых материалов при относительной влажности, равной 70 %
- •Основные механизмы электропроводности газов, диэлектрических жидкостей и твердых диэлектриков.
- •Чем обусловливается поверхностная электропроводность твердых диэлектриков?
- •1. Основные понятия
- •2. Виды диэлектрических потерь в электроизоляционных материалах
- •3. Диэлектрические потери в газах
- •4. Диэлектрические потери в жидких диэлектриках
- •Жидкости
- •5. Диэлектрические потери в твердых диэлектриках
- •Частотах
- •Температуре 50 °с)
- •Температуры
- •2. Пробой газов
- •4. Пробой твердых диэлектриков
- •Электрический пробой макроскопически однородных диэлектриков.
- •Электрическая прочность некоторых твердых диэлектриков в однородном поле при частоте 50 Гц
- •5. Тепловой и электрохимический пробой твердых диэлектриков
- •В чем различие в терминах: пробивное напряжение и электрическая прочность материала?
- •Каковы механизмы пробоя газоп, жидкостей и твердых тел?
- •Выведите выражение для пробивного напряжения при тепловом пробое по упрощенной теории н. II. Семенова и в. А. Фока.
- •"‘Нас Риас
- •Чиваемой поверхности (б)
- •Воздуха и температуры
- •Церезин 1,5-10'19 Полистирол 6,2-10"1?1- Триацетат целлюлозы . . . 2,ь10-в
- •Температурные коэффициенты линейного расширения некоторых диэлектриков
- •4. Химические свойства диэлектриков и воздействие на материалы излучений высокой энергии
- •Какие физико-химические и механические свойства диэлектриков необходимо учитывать при эксплуатации материалов?
- •Какие из этих свойств являются специфическими для диэлектриков?
- •К чему сводится влияние на диэлектрики излучений высокой энергии?
- •5. Общие сведения об органических полимерах
- •— Кремнийорганический; 6 — полиимидный
- •Р /v5 ис. 6-17. Схема установки для пропитки с применением вакуума и давления
- •Различных частотах
- •Мв/м при переменном напряжении частоты 50 Гц.
- •75 МПа, удельная ударная вязкость 20—
- •Изоляции на провод
- •Корпус; 8 — подвод воды для охлаждения червяка; 9 — слив воды
- •Из полиэтилена
- •Свойства гетииакса марок I и V, текстолита марки б и стеклотекстолита марки стэф (образцы толщиной более 10 мм)
- •6Текловолокно
- •18. Слюда и слюдяные материалы
- •(В % по массе)
- •Диаметра провода о
- •Охлаждении
- •Параметры некоторых сверхпроводкнксвых материалов
- •Изменение удельного сопротивления алюминия различной чистоты
- •5. Различные сплавы, припои, неметаллические проводники
- •Растворять и удалять оксиды и загрязнения с поверхности спаиваемых металлов;
- •Защищать в процессе пайки поверхность металла, а также расплавленный припой от окисления; 3) уменьшать поверхностное натяжение расплавленного припоя и смачиваемость им соединяемых поверхностей.
- •2. Электропроводность полупроводников
- •I I I I I I лической решетки германия: а — без примесей;
- •Р Тх Тип р Тг Тх Тип п % б) ис. 8-3. Определение типа электропроводности полупроводников: а — при помощи эффекта Холла; б — при помощи нагрева одного из концов испытуемого полупроводника
- •4. Элементы, обладающие свойствами полупроводников
- •От температуры
- •С воздушным охлаждением
- •От температуры
- •5. Полупроводниковые химические соединения и материалы на их основе
- •Свойства полупроводниковых соединений типа ашву
- •В кристалле
- •С магнитным сердечником
- •Точки компенсации (б)
- •Плотность и удельное сопротивление электротехнической стали в зависимости от содержания кремния
- •Предельное значение удельных потерь и магнитной •индукции электротехнической стали класса 2
- •Предельное значение удельных потерь и магнитной индукции электротехнической стали класса 3
- •Свойства железоникелевых сплавов (пермаллоев) после термической обработки
- •Проницаемостью
- •Состав и свойства мартенситных сталей для постоянных магнитов
- •Магнитные свойства магнитов из феррита бария н феррита кобальта
Рис.
3-6. Зависимость tg 6
от температуры для высушенной бумаги
при различных
Частотах
Р
ис.
3-7. Температурная зависимость tg 6
титаносодержащей керамики при частоте
50 Гц
емые релаксационной поляризацией, вызывающей повышенные ди электрические потери. К этим веществам относятся: муллит, входящий в состав изоляторного фарфора, кордиерит — компонент керамики с малым температурным коэффициентом расширения, Р-глинозем, получающийся при обжиге глиноземистых изделий, 7-глинозем, циркон, входящий в состав огнеупорной керамики, и др. (подробнее см. стр. 174).
Так как для большинства видов электрокерамики число ионов, участвующих в релаксационной поляризации, непрерывно возрастает с температурой, то максимум б отсутствует и температурная зависимость tg б подобно температурной зависимости удельной проводимости в первом приближении имеет экспоненциальный характер (рис. 3-7).
Диэлектрические потери в аморфных веществах ионной структуры — неорганических стеклах — связаны с явлением поляризации и электропроводности.
Рассматривая механизм диэлектрических потерь в стеклах, следует различать:
а) потери, мало зависящие от температуры и возрастающие прямо пропорционально частоте ^ б не зависит от частоты);
б) потери, заметно возрастающие с температурой по закону экспоненциальной функции и мало зависящие от частоты ^ б уменьшается с возрастанием частоты).
Потери первого вида обусловливаются релаксационной поляризацией и сильно выражены во всех технических стеклах. Чисто кварцевое стекло обладает весьма малыми релаксационными потерями. Введение в плавленый кварц небольшого количества оксидов вызывает заметное возрастание диэлектрических потерь из-за нарушения структуры стекла.
Термическая обработка — отжиг или закалка — заметно влияет на угол диэлектрических потерь стекла в связи с изменением его структуры.
В табл. 3-2 показано влияние способа термической обработки некоторых стекол на тангенс угла потерь
Потери второго вида вызываются передвижениями слабосвязанных ионов и должны рассматриваться как потери, обусловленные электропроводностью. Такие потери появляются обычно при температурах выше 50—100 °С.
Ч
Влияние термической обработки на тангенс угла потерь стекол при 20 °С и / = 1 МГц
|
|
б |
Способ обработки |
Стекло си- |
|
|
ликатно-нат- риевое |
свинцовое |
Длительный отжиг |
0,0073 |
0,0012 |
Закалка |
0,1250 |
0,0020 |
ем большую сквозную электропроводность имеет стекло,тем при более низкой температуре наблюдается возрастание тангенса угла потерь.|
Тангенс угла диэлектрических потерь для стекол разного состава уменьшается с ростом удельного сопротивления (рис. 3-8).
Тангенс угла диэлектрических потерь алюмооксида очень мал и почти не зависит от температуры, напротив, 6 электротехнического фарфора велик и резко зависит от температуры (рис. 3-9).
Диэлектрические потери в неорганических стеклах определяются входящими в стекло оксидами. Наличие в стекле щелочных оксидов (КагО, К20) при отсутствии тяжелых оксидов (ВаО, РЬО) вызывает значительное повышение диэлектрических потерь стекла. Введение тяжелых оксидов уменьшает tg б щелочных стекол.
Д
Рис. 3-І
иэлектрические потери в сенгетоэлектриках выше, чем у обычных диэлектриков. Особенностью сегнетоэлектриков, как указыва-
ід8
103
I1
/
/
/
Г
/
2
3
£
0
40 80 120 160200 240 280 °С
Рис.
3-9
Рис. 3-8. Зависимость 10 б от температуры при частоте 1 МГц для щелочных стекол, имеющих различное удельное объемное сопротивление (значения р измерялись при