
- •Второе издание удостоено государственной прем!* ссср
- •Кристалла — дислокация
- •В чет состоят основные представления о строении вещества?
- •Классификация материалов £ помощью зонной теории твердого тела и по магнитным свойствам.
- •3. Основные виды поляризации диэлектриков
- •4. Классификация диэлектриков по виду поляризации
- •5. Диэлектрическая проницаемость газов
- •Показатель преломления и диэлектрическая проницаемость некоторых газов
- •3). Число молекул n пропорционально давлению и обратно пропорционально абсолютной температуре.
- •6. Диэлектрическая проницаемость жидких диэлектриков
- •Диэлектрическая проницаемость и ее температурный коэффициент для неполярных и слабополярных жидкостей
- •Жидкости — совола
- •7. Диэлектрическая проницаемость твердых диэлектриков
- •Диэлектрическая проницаемость и показатель преломления некоторых неполярных твердых диэлектриков при температуре 20 “с
- •Значение ег и тк ег ионных кристаллов при температуре 20 °с
- •Различных частотах Значение ег неорганических стекол и органических полярных диэлектриков при 20 °с
- •Сегнетова соль 500—600 Титанат бария 1500—2000 Титанат бария с добавками . . 7000—9000
- •Электропроводность диэлектриков
- •2. Электропроводность газов
- •3 . Электропроводность жидкостей
- •4. Электропроводность твердых тел
- •Натриевый пирекс .... 2-10е Калиевый пирекс 8109 Свинцовое стекло 2-1010
- •5. Поверхностная электропроводность твердых диэлектриков
- •Удельное поверхностное сопротивление некоторых материалов при относительной влажности, равной 70 %
- •Основные механизмы электропроводности газов, диэлектрических жидкостей и твердых диэлектриков.
- •Чем обусловливается поверхностная электропроводность твердых диэлектриков?
- •1. Основные понятия
- •2. Виды диэлектрических потерь в электроизоляционных материалах
- •3. Диэлектрические потери в газах
- •4. Диэлектрические потери в жидких диэлектриках
- •Жидкости
- •5. Диэлектрические потери в твердых диэлектриках
- •Частотах
- •Температуре 50 °с)
- •Температуры
- •2. Пробой газов
- •4. Пробой твердых диэлектриков
- •Электрический пробой макроскопически однородных диэлектриков.
- •Электрическая прочность некоторых твердых диэлектриков в однородном поле при частоте 50 Гц
- •5. Тепловой и электрохимический пробой твердых диэлектриков
- •В чем различие в терминах: пробивное напряжение и электрическая прочность материала?
- •Каковы механизмы пробоя газоп, жидкостей и твердых тел?
- •Выведите выражение для пробивного напряжения при тепловом пробое по упрощенной теории н. II. Семенова и в. А. Фока.
- •"‘Нас Риас
- •Чиваемой поверхности (б)
- •Воздуха и температуры
- •Церезин 1,5-10'19 Полистирол 6,2-10"1?1- Триацетат целлюлозы . . . 2,ь10-в
- •Температурные коэффициенты линейного расширения некоторых диэлектриков
- •4. Химические свойства диэлектриков и воздействие на материалы излучений высокой энергии
- •Какие физико-химические и механические свойства диэлектриков необходимо учитывать при эксплуатации материалов?
- •Какие из этих свойств являются специфическими для диэлектриков?
- •К чему сводится влияние на диэлектрики излучений высокой энергии?
- •5. Общие сведения об органических полимерах
- •— Кремнийорганический; 6 — полиимидный
- •Р /v5 ис. 6-17. Схема установки для пропитки с применением вакуума и давления
- •Различных частотах
- •Мв/м при переменном напряжении частоты 50 Гц.
- •75 МПа, удельная ударная вязкость 20—
- •Изоляции на провод
- •Корпус; 8 — подвод воды для охлаждения червяка; 9 — слив воды
- •Из полиэтилена
- •Свойства гетииакса марок I и V, текстолита марки б и стеклотекстолита марки стэф (образцы толщиной более 10 мм)
- •6Текловолокно
- •18. Слюда и слюдяные материалы
- •(В % по массе)
- •Диаметра провода о
- •Охлаждении
- •Параметры некоторых сверхпроводкнксвых материалов
- •Изменение удельного сопротивления алюминия различной чистоты
- •5. Различные сплавы, припои, неметаллические проводники
- •Растворять и удалять оксиды и загрязнения с поверхности спаиваемых металлов;
- •Защищать в процессе пайки поверхность металла, а также расплавленный припой от окисления; 3) уменьшать поверхностное натяжение расплавленного припоя и смачиваемость им соединяемых поверхностей.
- •2. Электропроводность полупроводников
- •I I I I I I лической решетки германия: а — без примесей;
- •Р Тх Тип р Тг Тх Тип п % б) ис. 8-3. Определение типа электропроводности полупроводников: а — при помощи эффекта Холла; б — при помощи нагрева одного из концов испытуемого полупроводника
- •4. Элементы, обладающие свойствами полупроводников
- •От температуры
- •С воздушным охлаждением
- •От температуры
- •5. Полупроводниковые химические соединения и материалы на их основе
- •Свойства полупроводниковых соединений типа ашву
- •В кристалле
- •С магнитным сердечником
- •Точки компенсации (б)
- •Плотность и удельное сопротивление электротехнической стали в зависимости от содержания кремния
- •Предельное значение удельных потерь и магнитной •индукции электротехнической стали класса 2
- •Предельное значение удельных потерь и магнитной индукции электротехнической стали класса 3
- •Свойства железоникелевых сплавов (пермаллоев) после термической обработки
- •Проницаемостью
- •Состав и свойства мартенситных сталей для постоянных магнитов
- •Магнитные свойства магнитов из феррита бария н феррита кобальта
2. Виды диэлектрических потерь в электроизоляционных материалах
Диэлектрические потери по их особенностям и физической природе можно подразделить на четыре основных вида:
диэлектрические потери, обусловленные поляризацией;
диэлектрические потери, обусловленные сквозной электропроводностью;
ионизационные диэлектрические потери;
диэлектрические потери, обусловленные неоднородностью структуры.
Диэлектрические потери, обусловленные поляризацией, особенно отчетливо наблюдаются в веществах, обладающих релаксационной поляризацией: в диэлектриках дипольной структуры и в диэлектриках ионной структуры с неплотной упаковкой ионов.
Релаксационные диэлектрические потери обусловлены нарушением теплового движения частиц под влиянием сил электрического поля.
В температурной зависимости тангенса угла релаксационных диэлектрических потерь наблюдается максимум при некоторой температуре, характерной для данного вещества. При этой температуре время релаксации частиц диэлектрика примерно совпадает с периодом изменения приложенного переменного электрического поля. Если температура такова, что время релаксации частиц значительно больше полупериода изменения приложенного переменного напряжения,
то тепловое движение частиц будет менее интенсивным, и потери уменьшатся; если температура такова, что время релаксации частиц значительно меньше полупериода изменения напряжения, то интенсивность теплового движения будет больше, связь между частицами уменьшится, в результате чего потери также снизятся.
Диэлектрические потери, наблюдаемые в сегнетоэлектриках, связаны с явлением спонтанной поляризации. Поэтому потери в сегнето- электриках значительны при температурах ниже точки Кюри, когда наблюдается спонтанная поляризация. При температурах выше точки Кюри потери в сегнетоэлектриках уменьшаются. Электрическое старение сегнетоэлектрика со временем сопровождается некоторым уменьшением потерь.
К диэлектрическим потерям, обусловленным поляризацией, следует отнести также так называемые резонансные потери, проявляющиеся в диэлектриках при высоких частотах. Этот вид потерь с особой четкостью наблюдается в некоторых газах при строго определенной частоте и выражается в интенсивном поглощении энергии электрического поля.
Резонансные потери возможны и в твердых веществах, если частота вынужденных колебаний, вызываемых электрическим полем, совпадает с частотой собственных колебаний частиц твердого вещества. Наличие максимума в частотной зависимости tg б характерно также и для резонансного механизма потерь, однако в данном случае температура не влияет на положение максимума.
Диэлектрические потери, обусловленные сквозной электропроводностью, обнаруживаются в диэлектриках, имеющих заметную объемную или поверхностную проводимость. Тангенс угла диэлектрических потерь в этом случае можно вычислить по формуле
(3-15)
Диэлектрические потери этого вида не зависят от частоты поля; tg б уменьшается с частотой по гиперболическому закону.
Диэлектрические потери, обусловленные электропроводностью, возрастают с температурой по экспоненциальному закону:
Р
(3-16)
аГ = А ехр (—Ь/Т),где А, Ь — постоянные материала. Приближенно формулу (3-16) можно переписать так:
Р
(3-17)
&т = Рм ехр (а*),где Ра1 — потери при температуре /, °С; Ра0 — потери при температуре О °С; а — постоянная материала. Тангенс диэлектрических потерь в зависимости от температуры изменяется по тому же закону, который использован для аппроксимации температурной зависимости Рау так как температурным изменением емкости можно пренебречь.
Ионизационные диэлектрические потери свойственны диэлектрикам в газообразном состоянии. Ионизационные потери проявляются
в неоднородных электрических полях при напряженностях, превышающих значение, соответствующее началу ионизации данного газа.
Ионизационные потери можно вычислить по формуле
Л>.и = АЛ (и - иа)\ (3-18)
где Ах — постоянный коэффициент; / — частота поля; V — приложенное напряжение; 11„ — напряжение, соответствующее началу ионизации.
Формула (3-18) справедлива при £/> 11„ и линейной зависимости tg б от Е. Ионизационное напряжение 0„ зависит от давления, при котором находится газ, поскольку развитие ударной ионизации молекул связано с длиной свободного пробега носителей заряда.
Диэлектрические потери, обусловленные неоднородностью структуры, наблюдаются в слоистых диэлектриках, из пропитанной бумаги и ткани, в пластмассах с наполнителем, в пористой керамике в миканитах, микалексе и т. д.
Ввиду разнообразия структуры неоднородных диэлектриков и особенностей содержащихся в них компонентов не существует общей формулы расчета диэлектрических потерь этого вида.