
- •В.Л.Кассиль, гс.Лескин, м.А.Выжигина
- •Раздел I общие вопросы респираторной поддержки
- •Общие представления об острой
- •1.1. Определение понятия
- •1.2. Классификация и патогенез острой дыхательной недостаточности
- •1.3. Механизмы компенсации острой дыхательной недостаточности
- •1.4. Клинические признаки острой дыхательной недостаточности
- •1.5. Инструментальная оценка тяжести острой дыхательной недостаточности
- •1.6. Определение степени тяжести острой дыхательной недостаточности
- •2.1. Влияние искусственной вентиляции легких на гемодинамику
- •2.2. Влияние искусственной вентиляции легких на легочные функции
- •2.3. Влияние искусственной вентиляции легких на некоторые другие функции организма
- •3.1.Эндотрахеальная интубация
- •3.2. Эндобронхиальная интубация
- •3.3. Трахеостомия
- •3.4. Чрескожная катетеризация трахеи
- •3.5. Масочные методы респираторной поддержки
- •Раздел II
- •Глава 4
- •4.1. Традиционная искусственная .•
- •4.2. Режим традиционной искусственной вентиляции легких с инспираторной паузой (плато)
- •4.3. Режим традиционной искусственной вентиляции легких с ограничением давления на вдохе
- •1.4. Режим традиционной искусственной вентиляции легких с положительным давлением в конце выдоха
- •4.5. Режим традиционной искусственной вентиляции легких с периодическим
- •7.1. Общая характеристика методов ч|-
- •7.2. Высокочастотная объемная искусственная вентиляция легких
- •7.3. Осцилляторная высокочастотная искусственная вентиляция легких
- •7.4. Струйная высокочастотная искусственная вентиляция легких
- •7.5. Патофизиология и клиническое применение высокочастотной искусственной вентиляции легких
- •7.6. Особые методы струйной высокочастотной искусственной вентиляции легких
- •7.7. Показания к высокочастотной искусственной вентиляции легких
- •Раздел III
- •Глава 9
- •9.1. Адаптационная вспомогательная вентиляция легких
- •9.2. Триггерная вспомогательная вентиляция легких
- •9.3. Искусственно-вспомогательная вентиляция легких
- •12.1. Струйная высокочастотная вспомогательная вентиляция легких
- •12.2. Внешние методы высокочастотной вспомогательной вентиляции легких
- •Глава 13 •
- •Глава 14
- •14.1. Чрескожная электрическая стимуляция диафрагмального дыхания
- •14.2. Биоуправляемая электрическая стимуляция диафрагмального дыхания
- •Раздел IV
- •Глава 16
- •16.1. Искусственная вентиляция легких
- •16.2. Искусственная вентиляция легких при операциях на трахее и бронхах
- •18.1. Клинические показания г
- •18.2. Показания к искусственной вентиляции легких на основании данных j
- •Глава 19
- •19.2. Методы адаптации респиратора к больному
- •19.3. Выбор параметров искусственной и вспомогательной вентиляции легких в интенсивной терапии
- •19.4. Выбор вдыхаемой газовой смеси ,
- •19.5. Выбор параметров высокочастотной искусственной вентиляции легких
- •Глава 20
- •21.1. Осложнения со стороны дыхательных путей
- •21.2. Осложнения со стороны легких •• ••
- •21.3. Осложнения со стороны сердечно-сосудистой системы
- •21.4. Другие осложнения - -к-»"; *4»'m.«.Oi.SU c.I*
- •21.5. Осложнения, связанные с техническими . ,'.'», погрешностями при проведении искусственной и вентиляции легких
- •Глава 22 , д*' j
- •Глава 23
- •23.1. Респираторная поддержка , , {ч.. ,иле
- •23.2. Респираторная поддержка при респираторном дистресс-синдроме ' '(«шоковое легкое»)
- •23.3. Респираторная поддержка м при массивной жировой эмболии
- •23.5. Респираторная поддержка при астматическом состоянии
- •23.6. Респираторная поддержка ".
- •23.7. Респираторная поддержка "••-''• • . При механической асфиксии * '
- •23.8. Респираторная поддержка .?т.
- •23.9. Респираторная поддержка при ботулизме ', t I
- •23.10. Респираторная поддержка при разлитом перитоните
- •23.11. Респираторная поддержка • ,
- •23.12. Респираторная поддержка при эклампсии
- •24.1. Искусственная вентиляция легких при реанимационных мероприятиях
- •24.2. Искусственная вентиляция легких на месте происшествия и при транспортировании тяжелобольных и пострадавших
- •Раздел VI
- •25.1. Мониторинг вентиляционных параметров
- •25.2. Мониторинг газообмена
- •25.3. Мониторинг гемодинамики . *н
- •26.1. Стационарные респираторы
- •26.2. Портативные респираторы
- •26.3. Высокочастотные респираторы
- •26.4. Электростимулятор дыхания
- •26.5. Наркозно-дыхательная аппаратура • •'
- •Раздел I. Общие вопросы респираторной поддержки 5
- •Глава 1. Общие представления об острой дыхательной
- •Раздел II. Методы искусственной вентиляции
- •Глава 4. Традиционная искусственная вентиляция легких
- •Глава 7. Высокочастотная искусственная вентиляция легких . . 95
- •Глава 8. Сочетанные методы искусственной вентиляции легких 116
- •Раздел VI. Техническое обеспечение искусственной
- •Глава 25. Мониторинг респираторной поддержки..........271
- •Глава 26. Аппараты для искусственной и вспомогательной
25.2. Мониторинг газообмена
Современные стандарты мониторинга безопасности обязательно включают в себя контроль за состоянием газов во вдыхаемом и выдыхаемом воздухе, а также за насыщением крови кислородом. FiC-2, задаваемое респиратору врачом, контролируется специальным датчиком оксиметра, включенным в канал вдоха. Особое значение приобретает контроль FjO2 в процессе анестезии с использованием закиси азота (см. главу 15). Кроме того, независимо от канала вдоха в канале выдоха имеется свой оксиметрический датчик. Информативным показателем является разница между FjC^ и F^C^» которая отражает потребление организмом кислорода.
Эффективность оксигенации определяется величиной SaO2, которая зависит как от вентиляции легких, так и от состояния гемодинамики. Этот важный параметр необходимо монитори-ровать постоянно с помощью пульсоксиметрического датчика. Существуют два вида датчиков — для установки на палец и на мочку уха. Последний может быть также установлен на кончик языка или носа (например, у ожоговых больных или при недостаточном периферическом кровотоке). Существенное значение в оценке динамики SaC-2 имеет также форма пульсо-ксиметрической кривой. Снижение сатурации может быть не только следствием нарушений газообмена в легких, но и результатом периферического сосудистого спазма различной этиологии. Такая ситуация отразится в виде снижения ампли-
274
туды кривой и исчезновении на ней дикротической волны. Кстати, укажем, что первым действием врача при снижении «SaO2 должно быть перемещение датчика пульсоксиметра на другой палец или мочку уха, чтобы избежать неправильной оценки состояния больного.
Исключительно большое значение в оценке газообмена и го-меостаза в целом принадлежит капнометрии, мониторируемой в режиме on line. При ИВЛ в процессе анестезии содержание ССО2 в конце выдоха является, пожалуй, если не единственным, то главным показателем адекватности вентиляции метаболическим потребностям организма. FetCO2 (или Pet,CO2) является высокочувствительным параметром, реагирующим на операционный пневмоторакс, сдавление или выключение из вентиляции легкого (повышается), нарушения гемодинамики (снижается). FetCO2 также очень быстро и резко снижается даже при частичной разгерметизации дыхательного контура. Установлена высокая прямая корреляция между FetCO2 и сердечным выбросом [Флеров Е.В. и др., 1995]. Сегодняшний уровень развития газового мониторинга открывает путь для рутинного определения параметров механики дыхания во время анестезии [Merilajnen P.T., 1996].
Меньшее значение имеет величина FetCC>2 при проведении ИВЛ в интенсивной терапии, поскольку респираторную поддержку при ней осуществляют, особенно в остром периоде, в режиме гипервентиляции и об адекватности -вентиляционных параметров судят не по одному показателю, а по степени адаптации больного к респиратору. Однако важную информацию дает сопоставление PetCO2 и РаСОз- В норме разница между ними составляет' 5 мм рт.ст.; повышение этой разницы говорит о возросшем отношении vd/vt-
Весьма информативна форма кривой капнограммы (рис. 25.2). Наличие на ней четко выраженного плато свидетельствует об удовлетворительном распределении воздуха в легких. Чем хуже выражено плато, тем в большей степени нарушены вентиляционно-перфузионные отношения в легких.
Мониторинг газообмена проводят также по газам крови с использованием проточных (фиброоптическая оксиметрия) и транскутанных датчиков. Последний способ в настоящее время несколько утратил свое значение в связи с внедрением методов пульсоксиметрии и капнометрии выдыхаемого газа. Ограниченное применение транскутанной газометрии связано с ее зависимостью от состояния периферического кожного кровотока. Однако этот метод по-прежнему используют для оценки эффективности газообмена при ВЧ ИВЛ, при которой определение FetCO2 невозможно из-за большой частоты вентиляции.
Исследование газов крови микрометодом Аструпа также имеет большое значение, особенно в интенсивной терапии. Мо-
275
Рис. 25.2. Кривые давления (Paw) и потока (Flow) в дыхательных путях, капнограмма (FCO2) при ИВЛ (а) и поддержке дыхания давлением (6). Видно существенное улучшение формы кривой капнограммы и повышение (нормализация) FetCO2 при переходе от ИВЛ к ВВЛ. Запись на мониторе «AS-3» фирмы «Datex». f! к| *?»Т'<* ) ."S***1"' •: ' -. к"'•;•'•
ниторинг дыхательных газов не заменяет определения газового состава артериальной и венозной крови, а дополняет его и дает возможность непрерывного оперативного контроля. Следует иметь в виду, что ЗаОз, измеренное с помощью пульсоксиметра, а особенно с использованием транскутанного датчика, как правило, ниже, чем в артериальной крови, а РаСОз выше, чем PetCOg. Оценка параметров газов крови приведена в главе 1.