
- •Введение
- •Глава 1
- •§ 1. «Алгоритмические джунгли»
- •§ 2. Исходные данные и результаты. Массовость алгоритма
- •§ 4. Понятность алгоритма
- •§ 5. Рекурсивные определения
- •§ 6. Определенность алгоритма
- •§ 7. Выводы
- •Глава 2 создание алгоритмов
- •§ 1. Роль алгоритмов в науке и технике
- •§ 2. Как возникают алгоритмы
- •§ 3. Алгоритмы в математике
- •§ 4. Алгоритм Евклида
- •§ 5. Решето Эрагосфена
- •§ 6. Алгоритм разложения на простые множители. Определение наименьшего кратного двух чисел
- •§ 7. Распознавание алгебраического тождества
- •§ 8. Задачи на построение алгоритмов
- •Глава 3 кризис математики в начале XX века
- •§ 1. Арифметизация математики
- •§ 2. Теория множеств
- •§ 3. Кардинальные числа
- •§ 4. Антиномии
- •§ 5. Выводы из антиномий
- •Глава 4 логические теории алгоритмов
- •§ 1. Рекурсивные функции
- •§ 2. Машины Тьюринга
- •§ 3. Нормальные алгоритмы Маркова
- •§ 4. Эквивалентность описанных теорий
- •Глава 5
- •§ 1. Массовые проблемы. Неразрешимость проблем
- •§ 2. Экстраалгоритм и три неразрешимые проблемы
- •§ 3, Некоторые замечания
- •Глава 6 электронные вычислительные машины и программирование
- •§ 1. Устройство эвм
- •§ 2. Процессоры эвм. Рабочий цикл
- •§ 3. Что такое программа
- •§ 4. Особенности современных эвм
- •§ 5. Входные языки программирования
- •§ 6. Необходимость содержательной теории алгоритмов. Какой она должна быть
- •Г л а в а 7 формальные языки
- •§ 1. Анализ естественного языка
- •§ 2. Искусственные языки. Формальные языки
- •§ 3. Буквы, связи, оболочки, конструкции
- •§ 4. Формальные грамматики
- •§ 5. Нотация Бекуса. Тезаурусы
- •§ 1. Что такое операция?
- •§ 2. Натуральные операции
- •§ 4. Первичные алгоритмы
- •§ 5. Натуральные алгоритмы
- •§ 6. Ограничения на структуру исходных данных сняты
- •§ 8. Соотношение с алгоритмами в интуитивном смысле
- •§ 10. Исследование тупиков (клинчей)
- •§ 11. Формальная семантика формального языка
- •Глава 9 математическое обеспечение эвм
- •§ 1. Анализ эвм и программ
- •§ 2. Что такое математическое обеспечение эвм
- •§ 3. Функциональная классификация программ математического обеспечения эвм
- •§ 4. Операционные системы
- •И автоматизация процессов
- •§ I. Использование эвм для управления
- •§ 2. Информационные системы
- •§ 3. Алгоритмизация процессов
- •§ 4. Язык алгоритмизации процессов
- •§ 5. Наука и искусство алгоритмизации
- •Заключение
- •§ 1. Может ли машина мыслить? Может ли человек решить алгоритмически неразрешимую проблему?
- •§ 2. Детерминированность машин. Самообучение
- •§ 3. Сознание машин. Алгоритмическое моделирование
§ 5. Выводы из антиномий
Открытие антиномий потрясло математику и математиков как землетрясение. Их наличие, и при этом в такой области, как теория множеств (и логика, потому что парадокс брадобрея имеет логический характер), заставило опасаться того, что многие результаты, полученные в математике, тоже противоречивы. Можно было ожидать, что в дальнейшем будут появляться еще новые парадоксы. Все в математике стало казаться неустойчивым, потому что самый ее фундамент дал трещину.
Нужно сказать, что математики реагировали на землетрясение по-разному. Одни стали во всем сомневаться. Известный математик Ю. Дедекинд после опубликования антиномии Рассела на некоторое время прекратил публикацию своих работ. Математик Г. Фреге кончал в это время издание своего большого труда, подготовке которого он посвятил десять лет жизни. В первой же фразе послесловия он говорит, что фундамент построенного им здания поколеблен парадоксом Рассела. А. Пуанкаре, о котором мы уже говорили, изменил свое отношение к теории множеств. Были, конечно, и такие математики, которые на открытие антиномий никак не реагировали и бездумно продолжали применять теорию множеств, правда, в той ее части, в которой не обнаружено антиномий. Этих математиков обычно называют последователями классицизма. Но многие математики стали искать пути устранения противоречий.
Некоторые полагали, что противоречия возникают благодаря дефектам самой логики и стали пересматривать именно ее.
Другие предполагали, что парадоксы возникают из-за некорректности понятия множества, и занялись поиском такого определения множества, которое было бы свободно от внутренних противоречий.
Третьи — получившие название формалистов — пришли к выводу, что математика должна быть аксиоматизирована, а затем все теоремы совершенно формально доказаны. При этом возник вопрос о формальном языке для математики, таком, чтобы с аксиомами, изложенными на нем, можно было поступать как с определенными комбинациями символов. Доказательство теорем при этом принимало вид переработки исходных аксиом с помощью правил вывода в новые комбинации символов — теоремы. Эти математики разработали новую дисциплину — теорию математического вывода, называемую метаматематикой .
Четвертые усмотрели причину кризиса математики в том, что ряд математических объектов и методов являются неконструктивными. Разъясним последнюю точку зрения.
В теории множеств допускаются «готовые» бесконечные множества, уже существующие, уже завершенные. Завершенное бесконечное множество называют актуально бесконечным. Расходуя ограниченное количество ресурсов на каждом шаге, имеющем фиксированную длительность, построить такое множество ни реально, ни потенциально нельзя. Проверить, обладают ли все элементы такого множества каким-либо свойством, тоже нельзя, так как никакая ограниченная скорость проверки не дает возможности охватить их все. Другое дело, потенциально бесконечное, или потенциально осуществимое множество. Такое множество в каждый момент конечно, но есть прием, позволяющий добавить к нему всегда еще несколько (а потом еще несколько, и еще несколько, и так далее и, значит, сколько угодно) элементов. Анализ элементов такого множества можно провести исследованием правила, которое позволяет получать все новые и новые элементы этого «конструктивного» множества.
Актуально бесконечное множество, будучи недоступно ни построению, ни проверке, обязывает нас слепо доверять тем правилам логики, с помощью которых мы определили свойства его элементов. Указанные правила логики не основываются ни на каких фактах, доступных проверке, во всяком случае в смысле их правильности для актуально бесконечных множеств. Значит, говорят математики, придерживающиеся этой четвертой точки зрения, всей части теории множеств, имеющей деле с актуальной бесконечностью, доверять нельзя.
Будучи едины в своем отношении к актуальной бесконечности и в своем требовании конструктивности, сторонники четвертой точки зрения неодинаково решают вопрос о том, что допустимо в качестве исходного материала для конструкций. Таким образом, эта точка зрения делится на две группы.
Математики первой группы считают, что главным основанием для выбора какого-либо математического объекта в качестве исходного для дальнейших построений является его интуитивная очевидность. Читатель, вероятно, согласится, что выбор, опирающийся на интуицию, не может не быть субъективным. То, что интуитивно ясно одному, совершенно неясно другому. Это течение в математике получило название интуиционизма.
Математики второй группы считают, что исходным материалом для построений могут быть лишь наиболее простые математические объекты, применение которых оправдано всей практикой человечества, причем количество их типов должно быть ограничено. В качестве основного средства получения новых математических объектов должны служить алгоритмы. Это направление получило название конструктивного.
Нужно признать, что ученые всех перечисленных направлений внесли большой вклад в сокровищницу математики, получили большое число очень интересных, глубоких и важных научных результатов. Нужно также подчеркнуть, что наше описание различных точек зрения, возникающих в результате обнаружения антиномий, является упрощенным и неточным. Но более подробно осветить этот вопрос автор не имеет возможности.
Из всех указанных направлений мы выделим последнее — конструктивное, поскольку оно для обоснования математики приняло на вооружение алгоритмы, и его сторонники стали разрабатывать теорию алгоритмов.
Итак, мы ознакомились со второй причиной для разработки теории алгоритмов: необходимостью обоснования математики.
На этом автор хотел закончить главу, но вдруг понял, что любознательный читатель, узнав о том, что произошло в математическом мире в начале XX в., несомненно захочет узнать — а как же дело обстоит сейчас? Рассыпалась ли математика, как карточный домик, или она устояла, преодолела свой кризис?
Конечно, появление антиномий потрясло математику. Верно и то, что кризис математики еще и до сих пор полностью не преодолен. Три четверти столетия — слишком малый для этого срок.
Но в общем-то оснований для отчаяния нет. Хотя теория множеств и не в полном объеме проанализирована и соответствующим образом перестроена, но из нее выделена и переработана определенная часть, пока достаточная для обоснования всех остальных математических дисциплин. Математики могут пользоваться этой частью теории множеств, избегая, пока что, еще не «разминированных» областей. Сущность антиномий глубоко исследована. Современная математика впитала в себя положительные результаты, полученные сторонниками всех перечисленных направлений.
В дальнейшем изложении мы иногда будем пользоваться терминологией и понятиями теории множеств. Но, занимаясь алгоритмами, будем пребывать в мире конструктивных построений и термины теории множеств применять только для того, чтобы сделать язык более кратким и выразительным.