
- •Введение
- •Глава 1
- •§ 1. «Алгоритмические джунгли»
- •§ 2. Исходные данные и результаты. Массовость алгоритма
- •§ 4. Понятность алгоритма
- •§ 5. Рекурсивные определения
- •§ 6. Определенность алгоритма
- •§ 7. Выводы
- •Глава 2 создание алгоритмов
- •§ 1. Роль алгоритмов в науке и технике
- •§ 2. Как возникают алгоритмы
- •§ 3. Алгоритмы в математике
- •§ 4. Алгоритм Евклида
- •§ 5. Решето Эрагосфена
- •§ 6. Алгоритм разложения на простые множители. Определение наименьшего кратного двух чисел
- •§ 7. Распознавание алгебраического тождества
- •§ 8. Задачи на построение алгоритмов
- •Глава 3 кризис математики в начале XX века
- •§ 1. Арифметизация математики
- •§ 2. Теория множеств
- •§ 3. Кардинальные числа
- •§ 4. Антиномии
- •§ 5. Выводы из антиномий
- •Глава 4 логические теории алгоритмов
- •§ 1. Рекурсивные функции
- •§ 2. Машины Тьюринга
- •§ 3. Нормальные алгоритмы Маркова
- •§ 4. Эквивалентность описанных теорий
- •Глава 5
- •§ 1. Массовые проблемы. Неразрешимость проблем
- •§ 2. Экстраалгоритм и три неразрешимые проблемы
- •§ 3, Некоторые замечания
- •Глава 6 электронные вычислительные машины и программирование
- •§ 1. Устройство эвм
- •§ 2. Процессоры эвм. Рабочий цикл
- •§ 3. Что такое программа
- •§ 4. Особенности современных эвм
- •§ 5. Входные языки программирования
- •§ 6. Необходимость содержательной теории алгоритмов. Какой она должна быть
- •Г л а в а 7 формальные языки
- •§ 1. Анализ естественного языка
- •§ 2. Искусственные языки. Формальные языки
- •§ 3. Буквы, связи, оболочки, конструкции
- •§ 4. Формальные грамматики
- •§ 5. Нотация Бекуса. Тезаурусы
- •§ 1. Что такое операция?
- •§ 2. Натуральные операции
- •§ 4. Первичные алгоритмы
- •§ 5. Натуральные алгоритмы
- •§ 6. Ограничения на структуру исходных данных сняты
- •§ 8. Соотношение с алгоритмами в интуитивном смысле
- •§ 10. Исследование тупиков (клинчей)
- •§ 11. Формальная семантика формального языка
- •Глава 9 математическое обеспечение эвм
- •§ 1. Анализ эвм и программ
- •§ 2. Что такое математическое обеспечение эвм
- •§ 3. Функциональная классификация программ математического обеспечения эвм
- •§ 4. Операционные системы
- •И автоматизация процессов
- •§ I. Использование эвм для управления
- •§ 2. Информационные системы
- •§ 3. Алгоритмизация процессов
- •§ 4. Язык алгоритмизации процессов
- •§ 5. Наука и искусство алгоритмизации
- •Заключение
- •§ 1. Может ли машина мыслить? Может ли человек решить алгоритмически неразрешимую проблему?
- •§ 2. Детерминированность машин. Самообучение
- •§ 3. Сознание машин. Алгоритмическое моделирование
§ 4. Антиномии
В то время, когда А. Пуанкаре провозгласил, что математика обрела, наконец, надежный фундамент, сама арифметика пошатнулась из-за того, что в теории множеств были обнаружены противоречия (парадоксы), вошедшие в историю математики под названием антиномий.
Парадокс Кантора (обнаружен в 1899 г.). Пусть М — множество всех множеств. Обозначим его кардинальное число буквой т. В силу теоремы 1 кардинальное число множества его подмножеств 2т удовлетворяет условию 2m>m.
С другой стороны, множество М есть множество всех множеств. Его подмножества являются множествами и, значит, являются элементами М, а их множество, следовательно, является подмножеством множества М. Тогда в силу теоремы 2 должно иметь место неравенство 2т ≤ т.
Полученные два неравенства противоречат друг другу. В этом и проявляется парадокс (антиномия) Кантора.
Для создания парадоксальной ситуации мы привлекли к рассмотрению очень своеобразное множество всех множеств. Для него характерно то, что оно является своим собственным элементом, т. е. обладает свойством М М. Возникает законное сомнение — а возможно ли это? Может быть, таких множеств не бывает? Оказывается, бывают и даже среди не очень сложных. Множество коров не может быть своим собственным элементом, потому что оно не корова. Но рассмотрим следующие два примера.
1. Известно, что акционерами могут быть любые юридические лица, юридическими же лицами являются отдельные граждане и акционерные общества. Если некое акционерное общество X скупило часть собственных акций, то X является как множеством акционеров, так и собственным акционером, т. е. удовлетворяет условию Х£Х. Ничего противоречивого или невозможного в этом нет.
2. Для построения еще одного примера представим себе, что у нас есть библиотека, и в ней мы решили создать разделы (т. е. выделить множества книг). Для этого будем для каждого раздела составлять каталог и оформлять его в виде книги. Каждый каталог определяет некоторое множество книг. Очевидно, каталог может содержать в себе данные о самом себе. Такой каталог будем называть самоназывающимся, а каждый каталог, который не содержит сведений о самом себе, несамоназывающимся. Любой самоназывающийся каталог, с одной стороны, является книгой, а с другой — определяет множество книг (при абстрактном подходе говорят — является множеством книг), в которое сам входит.
Существование множеств, содержащих самих себя в качестве элементов, еще не парадоксально. Но вместе с некоторыми другими условиями оно может приводить к возникновению парадокса.
Кардинальное число является некоторой количественной характеристикой множества. Введем и мы такую характеристику для книг и каталогов.
Каждая книга в нашей библиотеке имеет цену, проставленную на ее переплете. Будем эту цену считать количественной характеристикой книги. Установим правило, согласно которому оценка каталога производится так: определяется максимальная цена книги из числа указанных в каталоге и прибавляется к этой величине 1 рубль. Это и будет цена каталога. Если обозначить цены указанных в каталоге книг через y1, y2, …, yi, …, yn, а цену каталога через х, то можно написать формулу для оценки каталога:
.
Теперь нам легко создать парадоксальную ситуацию.
Парадокс оценки каталогов. Директор библиотеки, узнав о большом числе каталогов в его библиотеке, принял решение создать раздел всех каталогов. Новый каталог был довольно быстро составлен, а вот с определением его цены произошла заминка. Для определения этой цены каталогизатор поступил так: если
то при любом i имеем x≥1+yi. Но одна из книг, указанных в каталоге, есть сам этот каталог; значит, его цена может быть подставлена в последнюю формулу, что даст неравенство х^1+х.
Найти такую цену х, которая удовлетворяла бы последнему условию, каталогизатор никак не мог. Тогда директор сказал: «Очевидно, каталог всех каталогов такая дорогая вещь, что оценить его невозможно. Давайте ликвидируем в библиотеке раздел каталогов, а каждый каталог включим в тот раздел, который в нем описан». К удивлению директора, после этого сразу все каталоги перестали поддаваться оценке.
Как директор разрешил парадокс оценки каталогов? Очень просто. Не математическими, а административными средствами. Он предложил вместо правила
применить правило
(i0 — номер каталога в нем самом).
Каталогизатор стал возражать, мотивируя тем, что за составление каталога ему положена плата, равная цене, проставляемой на каталоге. Предлагаемое директором изменение способа оценки каталогов уменьшит его заработок на столько рублей, сколько он составит каталогов. Но директор не смутился. Он издал приказ, по которому для каталогов была установлена новая оценка
но за каждый составленный каталог составителю полагается премия в сумме 1 рубль, после чего цена каталога должна быть увеличена на 1 рубль.
Мы привели здесь новое правило оценки каталогов для того, чтобы показать, что парадокс возникает только При определенных способах приписывания множествам числовых характеристик.
Парадокс Рассела (открыт в 1902 г.). Если парадокс Кантора возникает для множества, которое содержит себя в качестве своего элемента, то парадокс Рассела связан с множествами, не содержащими себя в качестве своих элементов. Для удобства будем множество, не содержащее себя в качестве элемента, называть обычным, а множество, содержащее себя в качестве элемента,— необычным.
Парадоксальным является множество всех обычных и только обычных множеств. Чтобы в этом убедиться, проверим, является ли оно само обычным или необычным. Сперва предположим, что оно обычное. Но тогда, будучи множеством всех обычных множеств, оно содержит и себя. Стало быть, оно необычное. Предположив, что оно обычное, мы получили противоречие.
Но, может быть, оно необычное, и дело с концом? Проверим. Если оно необычное, то, будучи множеством только обычных, оно себя в качестве элемента не содержит, а значит, является обычным. Опять противоречие.
Интересно, что парадокс Рассела может возникнуть и для каталогов, которыми мы уже пользовались для построения парадокса Кантора.
Парадоксальным оказывается каталог всех несамоназывающихся и только несамоназывающихся каталогов. Он не может быть самоназывающимся (содержать сведения о самом себе), так как является каталогом только несамоназывающихся каталогов. Точно так же он не может быть и несамоназывающимся, так как при этом не содержал бы сведений о себе (несамоназывающемся), но должен был бы содержать.
Парадокс брадобрея. Парадокс Рассела можно сформулировать без привлечения понятия множества. Представим себе, что один из солдат оказался по профессии парикмахером. Узнав об этом, командир полка приказал ему брить всех тех и только тех, кто сам себя не бреет. Все было хорошо, пока не пришло время побрить самого себя. Оказалось, что побрить себя нельзя, так как приказано брить только тех, кто себя не бреет; не брить себя тоже нельзя, потому что приказано брить всех, кто себя не бреет.
Не кажется ли читателю, что положение брадобрея подобно положению юноши, решившего купить костюм, цена которого меньше 50 рублей (потому что это дешевый костюм) и больше 150 рублей (потому что это хороший костюм)? Разница лишь в том, что условия для покупки костюма всегда противоречивы (не зависят от объекта покупки), а условия, при которых следует брить, не всегда: их противоречивость или непротиворечивость зависит от объекта бритья.