
- •Оглавление
- •Часть I
- •Глава 4. Первичные описательные статистики 40
- •Глава 5. Нормальный закон распределения и его
- •Глава 6. Коэффициенты корреляции 64
- •Глава 10. Корреляционный анализ 147
- •Глава 11. Параметрические методы сравнения двух
- •Глава 12. Непараметрические методы сравнения
- •Глава 14. Назначение и классификация многомерных
- •Глава 1
- •Глава I. Генеральная совокупность и выборка
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2 измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Глава 3
- •Глава 3. Таблицы и графики Та блица 3.1 х3,-— самооценка до тренинга (порядковый),
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Глава 4
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Глава 6
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
Часть I. Основы измерения и количественного описания данных
ОБРАБОТКА НА КОМПЬЮТЕРЕ
Графики двумерного рассеивания. Выбираем Graphs... > Scatter... > Simple. Нажимаем Define. В появляющемся окне назначаем осям переменные: выде ляем слева одну переменную, нажимаем > напротив «X Axis» (Ось X), выделя ем другую переменную, нажимаем > напротив «Y Axis». Нажимаем ОК. По лучаем график рассеивания назначенных переменных.
Вычисление парных корреляций. Выбираем Analyze > Correlate > Bivariate... В открывшемся окне диалога переносим интересующие переменные из ле вой части в правую при помощи кнопки > (переменных должно быть как минимум две). По умолчанию стоит флажок «Pearson» (корреляция г-Пирсо- на). Если интересует корреляция r-Спирмена или т-Кендалла, необходимо поставить соответствующие флажки внизу. Нажимаем ОК. В появившейся таблице строки и столбцы соответствуют выделенным ранее переменным. В ячейке на пересечении строки и столбца, соответствующих интересующим нас переменным, видим три числа: верхнее соответствует коэффициенту кор реляции, нижнее — численности выборки N, среднее — уровню значимости.
Вычисление частной корреляции. Выбираем Analyze > Correlate > Partial... В открывшемся окне диалога переносим интересующие переменные из ле вой части в правое верхнее окно (Variables:) при помощи верхней кнопки > (переменных должно быть как минимум две). Затем при помощи нижней кнопки > из левой части в правое нижнее окно (Controlling for:) переносим переменную, значения которой хотим фиксировать. Нажимаем ОК. Получа ем таблицу, аналогичную таблице парных корреляций, но верхнее число в каждой ячейке — значение частной корреляции соответствующих двух пере менных при фиксированном значении указанной третьей переменной. Ниж нее число — уровень значимости, а посередине — число степеней свободы.