
- •Оглавление
- •Часть I
- •Глава 4. Первичные описательные статистики 40
- •Глава 5. Нормальный закон распределения и его
- •Глава 6. Коэффициенты корреляции 64
- •Глава 10. Корреляционный анализ 147
- •Глава 11. Параметрические методы сравнения двух
- •Глава 12. Непараметрические методы сравнения
- •Глава 14. Назначение и классификация многомерных
- •Глава 1
- •Глава I. Генеральная совокупность и выборка
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2 измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Глава 3
- •Глава 3. Таблицы и графики Та блица 3.1 х3,-— самооценка до тренинга (порядковый),
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Глава 4
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Глава 6
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
Глава 6. Коэффициенты корреляции
Связь между этими переменными может быть изучена путем сравнения распределений учащихся по степени агрессивности для разных градаций образования родителей (или, что то же самое, путем сравнения распределения образования родителей для разных градаций степени агрессивности учащихся).
Исключением можно считать случай изучения связи двух бинарных переменных. Бинарная переменная имеет только две градации, обычно обозначаемые как О и 1. Примеры таких переменных: пол (мужской, женский), образование (среднее, высшее), тревожность (низкая, высокая), успешность (низкая, высокая) и т. д. При изучении связей между бинарными переменными обычно строят че-тырехклеточные таблицы сопряженности:
Таблица 6.1 Таблица сопряженности 2x2
|
Признак X |
Итог |
||
0 |
1 |
|
||
Признак Y |
0 |
а |
Ъ |
а+ b |
1 |
с |
d |
с + d |
|
Итог |
|
а + с |
b + d |
N |
В этом случае допустимо применение г-Пирсона (формула 6.1) непосредственно к исходным данным — двум бинарным переменным, принимающим значение 0 или 1, измеренным для каждого члена выборки численностью Л'. Результат применения r-Пирсона к двум бинарным переменным называется «фи-коэффициентом сопряженности» (Phi). Если данные представлены в четырех-клеточной таблице сопряженности, то применяется формула, существенно упрощающая расчеты, но дающая аналогичный результат:
ad-bc c
ср =
■ , (6.10)
J(a + b)(c + d)(a + c)(b + d) где а, Ь, с, d соответствуют обозначениям в четырехклеточной таблице 6.1.
ПРИМЕР 6.7
Исследовалась связь семейного положения студенток (X: 0 — холостая, 1 — замужем) и их академической успеваемости (Y: 0 — закончила вуз, 1 — отчислена). В распоряжении исследователя есть данные для 12 студенток:
№ |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
X |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
Y |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
Таблица сопряженности для этих данных:
|
X |
Итог |
||
0 |
1 |
|
||
Y |
0 |
5 |
1 |
6 |
1 |
2 |
4 |
6 |
|
Итог |
|
7 |
5 |
12 |
83