Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
nasledov_gl.1-6.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.7 Mб
Скачать

Часть I. Основы измерения и количественного описания данных

Для более полной интерпретации полезны соотношения между величи­ной х-Кендалла и вероятностью отдельно совпадений и инверсий:

Так, т = 0,5 значит, что вероятность совпадений равна 0,75, а вероятность инвер­сий — 0,25, то есть при сравнении объектов друг с другом прямо пропорциональ­ное соотношение (например, роста и веса) встречается в 3 раза чаще, чем обратно пропорциональное соотношение. Такая интерпретация кажется более понятной, чем, например, интерпретация корреляции Пирсона г= 0,5: «25% изменчивости в весе могут быть объяснены различиями в росте».

т-Кендалла кажется более простым в вычислительном отношении. Одна­ко при возрастании численности выборки, в отличие от л-Спирмена, объем вычислений х-Кендалла возрастает не пропорционально, а в геометрической прогрессии. Так, при N=12 необходимо перебрать 66 пар испытуемых, а при N = 48 — уже 1128 пар, т. е. объем вычислений вбзрастает более, чем в 17 раз.

Отметим важную особенность ранговых коэффициентов корреляции. Для метрической корреляции r-Пирсона значениям +1 или —1 соответствует пря­мая или обратная пропорция между переменными, что графически представ­ляет собой прямую линию. Максимальным по модулю ранговым корреляци­ям (+1, —1) вовсе не обязательно соответствуют строгие прямо или обратно пропорциональные связи между исходными переменными Хи Y: достаточна лишь монотонная функциональная связь между ними. Иными словами, ран­говые корреляции достигают своего максимального по модулю значения, если большему значению одной переменной всегда соответствует большее значе­ние другой переменной (+1) или большему значению одной переменной все­гда соответствует меньшее значение другой переменной и наоборот (—1).

Проблема связанных (одинаковых) рангов

В измерениях часто встречаются одинаковые значения. При их ранжиро­вании возникает проблема связанных рангов (Tied Ranks). В этом случае дей­ствует особое правило ранжирования: объектам с одинаковыми значениями

приписывается один и тот же, сред­ний ранг. Например, когда эксперт не может установить различие меж­ду двумя лучшими образцами това­ра, им приписывается одинаковый ранг: (1 + 2)/2 = 1,5. Это сохраняет неизменной сумму рангов для вы­борки объемом N: N(N + l)/2.

При наличии одинаковых (связан­ных) рангов формулы ранговой корре-

80

Глава 6. Коэффициенты корреляции

ляции Спирмена (6.6) и Кендама (6.7и 6.8) не подходят. Хотя сумма рангов и не меняется, но изменчивость данных становится меньше. Соответственно, умень­шается возможность оценить степень связи между измеренными свойствами. При использовании корреляции Спирмена в случае связанных рангов возмож­ны два подхода:

  • если связей немного (менее 10% для каждой переменной), то вычис­ лить r-Спирмена приближенно по формуле 6.6;

  • при большем количестве связей применить к ранжированным данным классическую формулу /"-Пирсона 6.1 — это всегда позволит опреде­ лить ранговую корреляцию независимо от наличия связей в рангах.

При использовании корреляции х-Кендалла в случае наличия связанных ран­гов в формулу вносятся поправки, и тогда получается общая формула для вы­числения т. коэффициента корреляции хь-Кендалла (Kendall's tau-b) независи­мо от наличия или отсутствия связей в рангах:

P-Q

'-l)/2]-Kxyj[N(N-l)/2]-Ky ' (6'9)

где х = (1/2)У/■(/■-1) (' — количество групп связей по X,ftчисленность каждой группы); х = (1/2)У/(/)-1) (/ — количество групп связей по У,/ — численность каждой группы).

ПРИМЕР 6.6

Супруги X и Y ранжировали 8 жизненных ценностей по степени предпочтения. Данные представлены в таблице:

Ценности

Ранги X

Ранги Y

Р (совпадения)

Q(инверсии)

Здоровье

1

1

7

0

Любовь

2

3

4

0

Богатство

4

3

3

0

Свобода

4

3

3

0

Мудрость

4

5

3

0

Познание

6

7

0

0

Развитие

7

7

0

0

Творчество

8

7

0

0

2 = 20

В качестве меры согласованности предпочтений супругов вычислим корреляцию т4-Кендалла, так как наблюдаются связи в рангах: одна группа из трех рангов по Хи две группы по три ранга по Y.

Обратите внимание на подсчет совпадений для объектов, попадающих в «связки». Например, для объекта «Богатство» пропускаются два ниже находящихся объекта, как имеющие одинаковые с ним ранги по X.

81

КОРРЕЛЯЦИЯ БИНАРНЫХ ДАННЫХ

Как отмечалось ранее, если одна из двух переменных представлена в но­минативной шкале, а другая — в числовой (ранговой или метрической), то связь между этими переменными лучше изучать путем сравнения групп по уровню выраженности числовой переменной.

ПРИМЕР

Предположим, исследуется связь количества пропущенных лекций студентами и курса обучения (с 1-го по 5-й). Первая переменная — метрическая, а вторая — но­минативная. Связь между этими переменными может быть изучена путем сравне­ния разных курсов по количеству пропущенных лекций (по средним значениям). Если будут обнаружены различия между курсами, то посещаемость лекций связана с курсом обучения, в противном случае — связи нет.

То же касается проблемы изучения связи между двумя номинативными переменными. Хотя и для этого случая существуют коэффициенты корреля­ции (К— Чупрова, С — Пирсона), но возможность их интерпретации весьма ограничена, в частности потому, что они отражают лишь силу связи, но не ее направление. Поэтому и в этом случае проблему связи между двумя номина­тивными переменными лучше изучать путем сравнения градаций одной пе­ременной по распределению другой переменной.

ПРИМЕР

П редположим, исследуется связь агрессивности учащихся (три градации: низкая, средняя, высокая) и образования их родителей (среднее, высшее техническое, выс­шее гуманитарное). Результаты исследования связей двух номинативных перемен­ных обычно представляются в виде таблицы сопряженности:

Агрессивность

Образование родителей

Среднее

Высш. технич.

Высш. гуманит.

Низкая

15

10

12

Средняя

18

15

14

Высокая

10

8

7

82

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]