
- •Оглавление
- •Часть I
- •Глава 4. Первичные описательные статистики 40
- •Глава 5. Нормальный закон распределения и его
- •Глава 6. Коэффициенты корреляции 64
- •Глава 10. Корреляционный анализ 147
- •Глава 11. Параметрические методы сравнения двух
- •Глава 12. Непараметрические методы сравнения
- •Глава 14. Назначение и классификация многомерных
- •Глава 1
- •Глава I. Генеральная совокупность и выборка
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2 измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Глава 3
- •Глава 3. Таблицы и графики Та блица 3.1 х3,-— самооценка до тренинга (порядковый),
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Глава 4
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Глава 6
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
Часть I. Основы измерения и количественного описания данных
№ |
X |
Y |
Ранги X |
Ранги У |
d, |
d] |
5 |
130 |
3,7 |
6 |
10 |
_4 |
16 |
6 |
90 |
4,6 |
12 |
3 |
9 |
81 |
7 |
162 |
4,0 |
3 |
8 |
-5 |
25 |
8 |
172 |
4,2 |
1 |
6 |
-5 |
25 |
9 |
120 |
4,1 |
8 |
7 |
1 |
1 |
10 |
150 |
3,6 |
4 |
11 |
_7 |
49 |
11 |
170 |
3,5 |
2 |
12 |
-10 |
100 |
12 |
112 |
4,8 |
9 |
1 |
8 |
64 |
S |
- |
- |
78 |
78 |
0 |
474 |
Для расчета корреляции г-Спирмена сначала необходимо ранжировать учащихся по той и другой переменной. После ранжирования можно проверить его правильность: сумма рангов должна быть равна N(N+ l)/2. Затем для каждого испытуемого надо вычислить разность рангов (сумма разностей рангов должна быть равна 0). После этого для каждого испытуемого вычисляется квадрат разности рангов — результат приведен в последнем столбце таблицы. Сумма квадратов разностей рангов равна 474. Подставляем известные значения в формулу 6.6:
Получена умеренная отрицательная связь между успеваемостью по математике и временем решения арифметической задачи.
Отметим: то же значение корреляции было бы получено при использовании формулы r-Пирсона непосредственно к рангам Хи Y. Применяя же формулу г-Пирсо-на к исходным значениям Хи Y, мы получим гху = —0,692.
Коэффициент корреляции т-Кендалла
Альтернативу корреляции Спирмена для рангов представляет корреляция т-Кендалла. В основе корреляции, предложенной М. Кендаллом, лежит идея о том, что о направлении связи можно судить, попарно сравнивая между собой испытуемых: если у пары испытуемых изменение по Xсовпадает по направлению с изменением по У, то это свидетельствует о положительной связи, если не совпадает — то об отрицательной связи.
В примере 6.3 данные испытуемых 1 и 2 свидетельствуют об отрицательной связи — мы видим инверсию: по переменной Ху второго испытуемого ранг больше, а по переменной У— меньше. Данные испытуемых 2 и 3, напротив, демонстрируют совпадение направления изменения переменных.
Корреляция т-Кендалла есть разность относительных частот совпадений и инверсий при переборе всех пар испытуемых в выборке:
x = P(p)-P(q),
78
Глава 6. Коэффициенты корреляции
где Р(р) и P(q) — относительные частоты, соответственно, совпадений и инверсий. Всего в выборке численностью УУ существует N(N— l)/2 всех возможных пар испытуемых. Следовательно,
P-Q
(6.7)
где Р — число совпадений, Q — число инверсий, а (Р+ Q) = N(N— l)/2. Формулу 6.7 можно представить и в ином виде:
т = ^-^- = 1 I^_ = _Zi 1. (6,8)
P + Q N(N-l) N(N-l)
При подсчете т-Кендалла «вручную» данные сначала упорядочиваются по переменной X. Затем для каждого испытуемого подсчитывается, сколько раз его ранг по доказывается меньше, чем ранг испытуемых, находящихся ниже. Результат записывается в столбец «Совпадения». Сумма всех значений столбца «Совпадения» и есть Р — общее число совпадений, подставляется в формулу 6.8. для вычисления т-Кендалла.
ПРИМЕР 6.5
Вычислим т-Кендалла для данных из примера 6.4. Сначала предварительно упорядочиваем испытуемых по переменной X. Затем подсчитываем число совпадений и инверсий для каждого испытуемого, сравнивая по Y его ранг с рангами испытуемых, находящихся под ним. Так, для первого испытуемого ранг по Кравен6,и 6 испытуемых, находящихся ниже него, имеют по Y более высокий ранг: в столбец «Совпадения» записываем 6. Для третьего по счету испытуемого ранг по Y равен 8, трое испытуемых ниже него имеют более высокий ранг, значит, в столбец «Совпадения» записываем 3, и т. д.
№ |
Ранги X |
Ранги Y |
Совпадения |
Инверсии |
8 |
1 |
6 |
6 |
5 |
11 |
2 |
12 |
0 |
10 |
7 |
3 |
8 |
3 |
6 |
10 |
4 |
11 |
0 |
8 |
4 |
5 |
9 |
1 |
6 |
5 |
6 |
10 |
0 |
6 |
1 |
7 |
2 |
4 |
1 |
9 |
8 |
7 |
0 |
4 |
12 |
9 |
1 |
3 |
0 |
2 |
10 |
4 |
1 |
1 |
3 |
11 |
5 |
0 |
1 |
6 |
12 |
3 |
0 |
0 |
|
|
|
Р= 18 |
0 = 48 |
79