Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
nasledov_gl.1-6.doc
Скачиваний:
11
Добавлен:
01.05.2025
Размер:
1.7 Mб
Скачать

Часть I. Основы измерения и количественного описания данных

исследователя имеется лишь выборка из 45 детей разного возраста — от 8 до 14 лет (переменная Z— возраст). Если будет получена существенная положительная корре­ляция между Хи Y, например гху = 0,54, то о чем это будет свидетельствовать? Осто­рожный исследователь вряд ли сделает однозначный вывод о том, что зрелость мо­ральных суждений непосредственно связана со скоростью чтения. Скорее всего, дело втом, что и зрелость моральных суждений, и скорость чтения повышаются с возрас­том. Иными словами, возраст является причиной согласованной (прямо пропорци­ональной) изменчивости и зрелости моральных суждений, и скорости чтения.

Для численного определения степени взаимосвязи двух переменных при усло­вии исключения влияния третьей применяют коэффициент частной корреляции {Partial Correlation). Для вычисления частной корреляции достаточно знать три коэффициента корреляции г-Пирсона между переменными X, Yu Zfr^, rxz и ryz):

(6.5)

где rxy^z — частная корреляция Хи Упри постоянном Z(kiih с учетом Z).

Ч астная корреляция rxy_z равна гху при любом фиксированном значении Z (в том случае, если Zлинeйнo коррелирует с Хтл У). Например, если значение частной корреляции скорости чтения Хи зрелости моральных суждений К с учетом возраста ZpaBHO 0,2 {rxy__z = 0,2) и возраст линейно коррелирует и с Хи с У, то с любой группе детей одного и того же возраста гху будет тоже равно 0,2.

ПРИМЕР 6.3

Один исследователь решил сопоставить антропометрические и психологические данные исследования довольно большой группы детей. Каково же было его изум­ление, когда обнаружилась существенная положительная корреляция между скоро­стью решения арифметических задач и размером стопы: гху = 0,42. Оказалось, однако, что дети были разного возраста. Корреляция размера стопы с возрастом составила rxy = QJ, а корреляция скорос­ти решения арифметических задач с возрастом гу, = 0,6. Эти данные позволяют выяснить, взаимосвязаны ли размер стопы и скорость решения арифметических задач с учетом возраста (при условии, что возраст остается неизменным). Для этого необходимо вычислить частный коэффициент корреляции между размером стопы Хи скоростью решения арифметических задач К(при фиксированном возрасте Z):

0,42-0,7-0,6

rxy-z = I = "

V(l-0,72)(l-0,62)

Таким образом, размер стопы и скорость решения арифметических задач корре­лируют исключительно за счет согласованности возрастной изменчивости этих показателей: частная корреляция между ними (с учетом возраста) равна нулю. И ес­ли мы возьмем группу детей одного и того же возраста, то корреляция размера сто­пы и скорости решения арифметических задач будет равна нулю.

76

Глава 6. Коэффициенты корреляции

Следует быть особенно осторожным, пытаясь дать интерпретацию част­ной корреляции с позиций причинности. Например, если Zкоррелирует и с 1и с Y, а частная корреляция rxy_z близка к нулю, из этого не обязательно следует, что именно Zявляeтcя общей причиной для Хн Y.

РАНГОВЫЕ КОРРЕЛЯЦИИ

Если обе переменные, между которыми изучается связь, представлены в порядковой шкале, или одна из них — в порядковой, а другая — в метричес­кой, то применяются ранговые коэффициенты корреляции: r-Спирмена или т-Кенделла. И тот, и другой коэффициент требует для своего применения предварительного ранжирования обеих переменных.

Коэффициент корреляции г-Спирмена

Если члены группы численностью /Убыли ранжированы сначала по пере­менной X, затем — по переменной Y, то корреляцию между переменными Хм Кможно получить, просто вычислив коэффициент r-Пирсона для двух рядов рангов. При условии отсутствия связей в рангах (т. е. отсутствия повторяю­щихся рангов) по той и другой переменной, формула для r-Пирсона может быть существенно упрощена в вычислительном отношении и преобразована в формулу, известную как г-Спирмена:

(6.6)

где с/, — разность рангов для испытуемого с номером /.

Коэффициент корреляции r-Спирмена (Spearman's rho) равен коэффициен­ту корреляции /--Пирсона, вычисленному для двух предварительно ранжиро­ванных переменных.

ПРИМЕР 6.4

Предположим, для каждого из 12 учащихся одного класса известно время решения тестовой арифметической задачи в секундах (X) и средний балл отметок по мате­матике за последнюю четверть (Y).

X

Y

Ранги X

Ранги Y

d,

d]

1

122

4,7

7

2

5

25

2

105

4,5

10

4

6

36

3

100

4,4

11

5

6

36

4

145

3,8

5

9

-4

16

77

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]