- •Оглавление
- •Часть I
- •Глава 4. Первичные описательные статистики 40
- •Глава 5. Нормальный закон распределения и его
- •Глава 6. Коэффициенты корреляции 64
- •Глава 10. Корреляционный анализ 147
- •Глава 11. Параметрические методы сравнения двух
- •Глава 12. Непараметрические методы сравнения
- •Глава 14. Назначение и классификация многомерных
- •Глава 1
- •Глава I. Генеральная совокупность и выборка
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2 измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Глава 3
- •Глава 3. Таблицы и графики Та блица 3.1 х3,-— самооценка до тренинга (порядковый),
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Глава 4
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Глава 6
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
Часть I. Основы измерения и количественного описания данных
исследователя имеется лишь выборка из 45 детей разного возраста — от 8 до 14 лет (переменная Z— возраст). Если будет получена существенная положительная корреляция между Хи Y, например гху = 0,54, то о чем это будет свидетельствовать? Осторожный исследователь вряд ли сделает однозначный вывод о том, что зрелость моральных суждений непосредственно связана со скоростью чтения. Скорее всего, дело втом, что и зрелость моральных суждений, и скорость чтения повышаются с возрастом. Иными словами, возраст является причиной согласованной (прямо пропорциональной) изменчивости и зрелости моральных суждений, и скорости чтения.
Для численного определения степени взаимосвязи двух переменных при условии исключения влияния третьей применяют коэффициент частной корреляции {Partial Correlation). Для вычисления частной корреляции достаточно знать три коэффициента корреляции г-Пирсона между переменными X, Yu Zfr^, rxz и ryz):
где rxy^z — частная корреляция Хи Упри постоянном Z(kiih с учетом Z).
Ч астная корреляция rxy_z равна гху при любом фиксированном значении Z (в том случае, если Zлинeйнo коррелирует с Хтл У). Например, если значение частной корреляции скорости чтения Хи зрелости моральных суждений К с учетом возраста ZpaBHO 0,2 {rxy__z = 0,2) и возраст линейно коррелирует и с Хи с У, то с любой группе детей одного и того же возраста гху будет тоже равно 0,2.
ПРИМЕР 6.3
Один исследователь решил сопоставить антропометрические и психологические данные исследования довольно большой группы детей. Каково же было его изумление, когда обнаружилась существенная положительная корреляция между скоростью решения арифметических задач и размером стопы: гху = 0,42. Оказалось, однако, что дети были разного возраста. Корреляция размера стопы с возрастом составила rxy = QJ, а корреляция скорости решения арифметических задач с возрастом гу, = 0,6. Эти данные позволяют выяснить, взаимосвязаны ли размер стопы и скорость решения арифметических задач с учетом возраста (при условии, что возраст остается неизменным). Для этого необходимо вычислить частный коэффициент корреляции между размером стопы Хи скоростью решения арифметических задач К(при фиксированном возрасте Z):
0,42-0,7-0,6
rxy-z
=
I =
"
V(l-0,72)(l-0,62)
Таким образом, размер стопы и скорость решения арифметических задач коррелируют исключительно за счет согласованности возрастной изменчивости этих показателей: частная корреляция между ними (с учетом возраста) равна нулю. И если мы возьмем группу детей одного и того же возраста, то корреляция размера стопы и скорости решения арифметических задач будет равна нулю.
76
Глава 6. Коэффициенты корреляции
Следует быть особенно осторожным, пытаясь дать интерпретацию частной корреляции с позиций причинности. Например, если Zкоррелирует и с 1и с Y, а частная корреляция rxy_z близка к нулю, из этого не обязательно следует, что именно Zявляeтcя общей причиной для Хн Y.
РАНГОВЫЕ КОРРЕЛЯЦИИ
Если обе переменные, между которыми изучается связь, представлены в порядковой шкале, или одна из них — в порядковой, а другая — в метрической, то применяются ранговые коэффициенты корреляции: r-Спирмена или т-Кенделла. И тот, и другой коэффициент требует для своего применения предварительного ранжирования обеих переменных.
Коэффициент корреляции г-Спирмена
Если члены группы численностью /Убыли ранжированы сначала по переменной X, затем — по переменной Y, то корреляцию между переменными Хм Кможно получить, просто вычислив коэффициент r-Пирсона для двух рядов рангов. При условии отсутствия связей в рангах (т. е. отсутствия повторяющихся рангов) по той и другой переменной, формула для r-Пирсона может быть существенно упрощена в вычислительном отношении и преобразована в формулу, известную как г-Спирмена:
где с/, — разность рангов для испытуемого с номером /.
Коэффициент корреляции r-Спирмена (Spearman's rho) равен коэффициенту корреляции /--Пирсона, вычисленному для двух предварительно ранжированных переменных.
ПРИМЕР 6.4
Предположим, для каждого из 12 учащихся одного класса известно время решения тестовой арифметической задачи в секундах (X) и средний балл отметок по математике за последнюю четверть (Y).
№ |
X |
Y |
Ранги X |
Ранги Y |
d, |
d] |
1 |
122 |
4,7 |
7 |
2 |
5 |
25 |
2 |
105 |
4,5 |
10 |
4 |
6 |
36 |
3 |
100 |
4,4 |
11 |
5 |
6 |
36 |
4 |
145 |
3,8 |
5 |
9 |
-4 |
16 |
77
