
- •Оглавление
- •Часть I
- •Глава 4. Первичные описательные статистики 40
- •Глава 5. Нормальный закон распределения и его
- •Глава 6. Коэффициенты корреляции 64
- •Глава 10. Корреляционный анализ 147
- •Глава 11. Параметрические методы сравнения двух
- •Глава 12. Непараметрические методы сравнения
- •Глава 14. Назначение и классификация многомерных
- •Глава 1
- •Глава I. Генеральная совокупность и выборка
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2 измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Глава 3
- •Глава 3. Таблицы и графики Та блица 3.1 х3,-— самооценка до тренинга (порядковый),
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Глава 4
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Глава 6
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
Часть I. Основы измерения и количественного описания данных
Сумма произведений отклонений дает нам значение числителя, а произведение стандартных отклонений и (./V— 1) — значение знаменателя формулы коэффициента корреляции:
- - 25'6 - = 0,517.
" 1,735 1,501 19
Если значения той и другой переменной были преобразованы в г-значения по формуле:
то
формула коэффициента
корреляции
r-Пирсона
выглядит проще:
N
39 N-l '
Отметим еще раз: на величину коэффициента корреляции не влияет то, в каких единицах измерения представлены признаки. Следовательно, любые линейные преобразования признаков (умножение на константу, прибавление константы: у; = хр + а) не меняют значения коэффициента корреляции. Исключением является умножение одного из признаков на отрицательную константу: коэффициент корреляции меняет свой знак на противоположный.
На рис. 6.2 приведены примеры диаграмм рассеивания для различных значений коэффициента корреляции. Обратите внимание: на последнем рисунке визуально наблюдается нелинейная взаимосвязь между переменными, однако коэффициент корреляции равен нулю. Таким образом, коэффициент корреляции Пирсона есть мера прямолинейной взаимосвязи; он не чувствителен к криволинейным связям.
КОРРЕЛЯЦИЯ, РЕГРЕССИЯ И КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ
Корреляция Пирсона есть мера линейной связи между двумя переменными. Она позволяет определить, насколько пропорциональна изменчивость двух переменных. Если переменные пропорциональны друг другу, то графически связь между ними можно представить в виде прямой линии с положительным (прямая пропорция) или отрицательным (обратная пропорция) наклоном. Кроме того, если известна пропорция между переменными, заданная уравнением графика прямой линии:
72
Глава 6. Коэффициенты корреляции
то по известным значениям переменной ЛГможно точно предсказать значения переменной Y.
На практике связь между двумя переменными, если она есть, является вероятностной и графически выглядит как облако рассеивания эллипсоидной формы. Этот эллипсоид, однако, можно представить (аппроксимировать) в виде прямой линии, или линии регрессии. Линия регрессии (Regression Line) — это прямая, построенная методом наименьших квадратов: сумма квадратов расстояний (вычисленных по оси У) от каждой точки графика рассеивания до прямой является минимальной:
у-, = bXj+а, (6.2)
где b — коэффициент регрессии (Regression Coefficient), задающий угол наклона прямой; а — свободный член, определяющий точку пересечения прямой оси Y. Если известны средние, стандартные отклонения и корреляция гху, то сумма квадратов ошибок минимальна, если:
о
b = r —^-,а = М„—ЬМг (f, i.\
у *. (6.3)
Таким образом, если на некоторой выборке измерены две переменные, которые коррелируют друг с другом, то, вычислив коэффициенты регрессии,
Рис. 6.4. Диаграмма рассеивания и линия регрессии (е,- — ошибка оценки для одного из
объектов)
73