
- •Оглавление
- •Часть I
- •Глава 4. Первичные описательные статистики 40
- •Глава 5. Нормальный закон распределения и его
- •Глава 6. Коэффициенты корреляции 64
- •Глава 10. Корреляционный анализ 147
- •Глава 11. Параметрические методы сравнения двух
- •Глава 12. Непараметрические методы сравнения
- •Глава 14. Назначение и классификация многомерных
- •Глава 1
- •Глава I. Генеральная совокупность и выборка
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2 измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Глава 3
- •Глава 3. Таблицы и графики Та блица 3.1 х3,-— самооценка до тренинга (порядковый),
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Глава 4
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Глава 6
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
Глава 5. Нормальный закон распределения и его применение
Kurtosis, Skewness, нажимаем Continue, затем ОК. В таблице результатов столбцы Kurtosis и Skewness содержат значения асимметрии (Kurtosis) и эксцесса (Skewness) и соответствующие им стандартные ошибки (Std. Error). Распределение соответствует нормальному виду, если для соответствующей переменной абсолютные значения асимметрии и эксцесса не превышают свои стандартные ошибки.
Графический способ. Выбираем Graphs > РР... — графики накопленных частот (или Graphs > QQ... — квантильные графики). Открывается диалог Р-Р Plots (Q-Q Plots). Переносим из левого в правое окно интересующие нас переменные. Нажимаем ОК. В окне результатов просматриваем графики Normal Р-Р Plot... (Normal Q-Q Plot...), на которых по горизонтальной оси отложены соответствующие эмпирические значения, а по вертикальной оси — теоретические значения. Чем ближе точки графиков к прямой линии, тем меньше отличие распределения от нормального вида.
Критерий нормальности Колмогорова-Смирнова. Выбираем Analyze > Nonpa-rametric Tests > 1-Sample K-S... Открывается диалог One-Sample Kolmogorov-Smirnov Test. Переносим из левого в правое окно интересующие нас переменные. Нажимаем ОК. В соответствующем переменной столбце находим Kolmogorov-SmirnovZ (значение критерия) и Asymp. Sig. (2-tailed) (вероятность того, что распределение соответствует нормальному виду). Если значение Asymp. Sig. меньше или равно 0,05, то распределение существенно отличается от нормального вида. Если Asymp. Sig. больше 0,05, то существенного отличия от нормальности не обнаружено.
Глава 6
КОЭФФИЦИЕНТЫ КОРРЕЛЯЦИИ
В главе 4 мы рассмотрели основные одномерные описательные статистики — меры центральной тенденции и изменчивости, которые применяются для описания одной переменной. В этой главе мы рассмотрим основные коэффициенты корреляции.
Коэффициент корреляции — двумерная описательная статистика, количественная мера взаимосвязи (совместной изменчивости) двух переменных.
История разработки и применения коэффициентов корреляции для исследования взаимосвязей фактически началась одновременно с возникновением измерительного подхода к исследованию индивидуальных различий — в 1870—1880 гг. Пионером в измерении способностей человека, как и автором самого термина «коэффициент корреляции», был Френсис Гальтон, а самые популярные коэффициенты корреляции были разработаны его последователем Карлом Пирсоном. С тех пор изучение взаимосвязей с использованием коэффициентов корреляции является одним из наиболее популярных в психологии занятием.
К настоящему времени разработано великое множество различных коэффициентов корреляции, проблеме измерения взаимосвязи с их помощью посвящены сотни книг. Поэтому, не претендуя на полноту изложения, мы рассмотрим лишь самые важные, действительно незаменимые в исследованиях меры связи — /--Пирсона, r-Спирмена и т-Кендалла'. Их общей особенностью является то, что они отражают взаимосвязь двух признаков, измеренных в количественной шкале — ранговой или метрической.
Вообще говоря, любое эмпирическое исследование сосредоточено на изучении взаимосвязей двух или более переменных.
П
РИМЕРЫ
П
риведем
два примера исследования влияния
демонстрации
сцен насилия по ТВ на агрессивность
подростков. 1. Изучается взаимосвязь
двух переменных, измеренных в
количественной (ранговой или метрической)
шкале:
1)«время просмотра телепередач с
насилием»; 2)
«агрессивность».
Ч
итается
как тау-Кендалла.
64