
- •Оглавление
- •Часть I
- •Глава 4. Первичные описательные статистики 40
- •Глава 5. Нормальный закон распределения и его
- •Глава 6. Коэффициенты корреляции 64
- •Глава 10. Корреляционный анализ 147
- •Глава 11. Параметрические методы сравнения двух
- •Глава 12. Непараметрические методы сравнения
- •Глава 14. Назначение и классификация многомерных
- •Глава 1
- •Глава I. Генеральная совокупность и выборка
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2 измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Глава 3
- •Глава 3. Таблицы и графики Та блица 3.1 х3,-— самооценка до тренинга (порядковый),
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Глава 4
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Глава 6
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
Глава 5. Нормальный закон распределения и его применение
Причины отклонения от нормальности. Общей причиной отклонения формы выборочного распределения признака от нормального вида чаще всего является особенность процедуры измерения: используемая шкала может обладать неравномерной чувствительностью к измеряемому свойству в разных частях диапазона его изменчивости.
ПРИМЕР
Предположим, выраженность некоторой способности определяется количеством выполненных заданий за отведенное время. Если задания простые или время слишком велико, то данная измерительная процедура будет обладать достаточной чувствительностью лишь в отношении части испытуемых, для которых эти задания достаточно трудны. И слишком большая доля испытуемых будет решать все или почти все задания. В итоге мы получим распределение с выраженной правосторонней асимметрией. Можно, конечно, впоследствии повысить качество измерения путем эмпирической нормализации, добавив более сложные задания или сократив время выполнения данного набора заданий. Если же мы чрезмерно усложним измерительную процедуру, то возникнет обратная ситуация, когда большая часть испытуемых будет решать малое количество заданий и эмпирическое распределение приобретет левостороннюю асимметрию.
Таким образом, такие отклонения от нормального вида, как право- или левосторонняя асимметрия или слишком большой эксцесс (больше 0), связаны с относительно низкой чувствительностью измерительной процедуры в области моды (вершины графика распределения частот).
Последствия отклонения от нормальности. Следует отметить, что задача получения эмпирического распределения, строго соответствующего нормальному закону, нечасто встречается в практике исследования. Обычно такие случаи ограничиваются разработкой новой измерительной процедуры или тестовой шкалы, когда применяется эмпирическая или нелинейная нормализация для «исправления» эмпирического распределения. В большинстве случаев соответствие или несоответствие нормальности является тем свойством измеренного признака, который исследователь должен учитывать при выборе статистических процедур анализа данных.
Заметно ли "на глаз" отличие распределения от нормального вида?
X
В
общем случае при значительном отклонении
эмпирического распределения
от нормального следует отказаться от
предположения о том, что признак
измерен в метрической шкале. Но остается
открытым вопрос о том, какова
мера существенности этого отклонения?
Кроме того, разные методы анализа
данных обладают различной чувствительностью
к отклонениям от нормальности.
Обычно при обосновании
перспективности этой проблемы приводят
принцип Р. Фишера, одного из
«отцов-основателей» современной
статистики:
«Отклонения
от нормально-
61
Часть I. Основы измерения и количественного описания данных
го вида, если только они не слишком заметны, можно обнаружить лишь для больших выборок; сами по себе они вносят малое отличие в статистические критерии и другие вопросы»1. К примеру, при малых, но обычных для психологических исследований выборках (до 50 человек) критерий Колмогорова-Смирнова недостаточно чувствителен при определении даже весьма заметных «на глаз» отклонений от нормальности. В то же время некоторые процедуры анализа метрических данных вполне допускают отклонения от нормального распределения (одни — в большей степени, другие — в меньшей). В дальнейшем при изложении материала мы при необходимости будем оговаривать меру жесткости требования нормальности.
Задачи и упражнения
Некоторое свойство измеряется при помощи тестовой шкалы СЕЕВ (Л/=500, о= 100). Какая приблизительно доля генеральной совокупно сти имеет балл от 600 до 700?
В генеральной совокупности значения IQ в шкале Векслера распределе ны приблизительно нормально со средним 100 и стандартным отклоне нием 15. С помощью таблиц определите следующие вероятности:
а) вероятность того, что случайно выбранный человек будет иметь IQ между 79 и 121;
б) вероятность того, что случайно выбранный человек будет иметь IQ выше 127; ниже 73.
3. Определите при помощи квантильного графика, соответствует ли нор мальному виду распределение переменной со следующими значениями процентилей:
В области каких значений шкала, в которой измерен признак, обладает большей дифференцирующей способностью (чувствительностью), а в какой — меньшей?
ОБРАБОТКА НА КОМПЬЮТЕРЕ
Критерии асимметрии и эксцесса. Выбираем Analyze > Descriptive Statistics > Descriptives... В окне диалога переносим из левого окна в правое интересующие нас переменные. Нажимаем кнопку Options..., ставим флажок Distribution >
1 Цит. по: Справочник по прикладной статистике: В 2 т. / Под ред. Э. Ллойда, У. Ледермана. М., 1989. Т. 1.С. 270.
62