
- •Оглавление
- •Часть I
- •Глава 4. Первичные описательные статистики 40
- •Глава 5. Нормальный закон распределения и его
- •Глава 6. Коэффициенты корреляции 64
- •Глава 10. Корреляционный анализ 147
- •Глава 11. Параметрические методы сравнения двух
- •Глава 12. Непараметрические методы сравнения
- •Глава 14. Назначение и классификация многомерных
- •Глава 1
- •Глава I. Генеральная совокупность и выборка
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2 измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Глава 3
- •Глава 3. Таблицы и графики Та блица 3.1 х3,-— самооценка до тренинга (порядковый),
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Глава 4
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Глава 6
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
Глава 5. Нормальный закон распределения и его применение
Табл ица 5.1 Тестовые нормы — таблица пересчета «сырых» баллов в стены
Стены |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
«Сырые» баллы |
<11 |
11-13 |
14-16 |
17-19 |
20-22 |
23-25 |
26-28 |
29-31 |
32-34 |
>34 |
Пользуясь этой таблицей тестовых норм индивидуальный результат («сырой» балл) переводят в шкалу стенов, что позволяет интерпретировать выраженность измеряемого свойства.
В общем случае границы интервалов определяются по формуле г-преоб-разования:
K/f с/ .— A/f /т
о\
z = -
о\
где Xj — искомая граница интервала «сырых» оценок, stt — граница интервала в стандартной тестовой шкале, Мх, ох, Msh osl — средние и стандартные отклонения «сырых» оценок (х) и стандартной шкалы (st).
Эмпирическая нормализация применяется, когда распределение «сырых» баллов отличается от нормального. Она заключается в изменении содержания тестовых заданий. Например, если «сырая» оценка — это количество задач, решенных испытуемыми за отведенное время, и получено распределение с правосторонней асимметрией, то это значит, что слишком большая доля испытуемых решает больше половины заданий. В этом случае необходимо либо добавить более трудные задания, либо сократить время решения.
Нелинейная нормализация применяется, если эмпирическая нормализация невозможна или нежелательна, например, с точки зрения затрат времени и ресурсов. В этом случае перевод «сырых» оценок в стандартные производится через нахождение процентильных границ групп в исходном распределении, соответствующих процентильным границам групп в нормальном распределении стандартной шкалы. Каждому интервалу стандартной шкалы ставится в соответствие такой интервал шкалы «сырых» оценок, который содержит ту же процентную долю выборки стандартизации. Величины долей определяются по площади под единичной нормальной кривой, заключенной между соответствующими данному интервалу стандартной шкалы г-оценками.
Например, для того чтобы определить, какой «сырой» балл должен соответствовать нижней границе стена 10, необходимо сначала выяснить, какому г-значению соответствует эта граница (z = 2). Затем по таблице нормального распределения (приложение 1) надо определить, какая доля площади под нормальной кривой находится правее этого значения (0,023). После этого определяется, какое значение отсекает 2,3% наибольших значений «сырых» баллов выборки стандартизации. Найденное значение и будет соответствовать границе 9 и 10 стена.
57
Часть I. Основы измерения и количественного описания данных
ПРИМЕР
Р ассмотрим пример нелинейной нормализации. Допустим, разрабатываемый тест предполагает решение 20 заданий. Объем выборки стандартизации N= 200 человек. Сначала строится таблица распределения частот «сырых» оценок (табл. 5.2).
Таб л и ца 5.2
|
|
|
Таблица распределения частот |
«сырыхх |
» оценок |
|
|
|
|
||||||||||
Оценка |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
Частота |
2 |
6 |
4 |
6 |
4 |
8 |
6 |
10 |
10 |
12 |
12 |
16 |
24 |
20 |
14 |
14 |
10 |
14 |
8 |
Исходное распределение заметно отличается от нормального — оно имеет правостороннюю асимметрию (рис. 5.6). В качестве стандартной выберем шкалу стенай-нов, для каждой градации которой известны процентные доли (см. рис. 5.5). Исходя из этих процентных долей и таблицы распределения «сырых» оценок строится таблица тестовых норм (табл. 5.3). Сначала отбираются 4% испытуемых, решивших наименьшее количество заданий. У нас 8 испытуемых (4%) решили менее 4 заданий. Это число заданий будет соответствовать 1 -му стенайну. Второму стенайну будет соответствовать результат следующих 7% (14) испытуемых: от 4 до 6 заданий, и т. д. Итог нелинейной стандартизации — таблица перевода «сырых» оценок в шкальные, стенайны (табл. 5.3).
Табл и ца 5.3 Пример нелинейной нормализации: пересчет «сырых» оценок в шкалу стенайнов
Стенайны |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
% |
4 |
7 |
12 |
17 |
20 |
17 |
12 |
7 |
4 |
«Сырые» оценки |
<4 |
4-6 |
7-9 |
10-12 |
13-14 |
15-16 |
17-18 |
19 |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Рис. 5.6. Распределение «сырых» оценок (по данным табл. 5.2)
Изложенные основы психодиагностики позволяют сформулировать математически обоснованные требования к тесту. Тестовая методика должна содержать:
58