
- •Оглавление
- •Часть I
- •Глава 4. Первичные описательные статистики 40
- •Глава 5. Нормальный закон распределения и его
- •Глава 6. Коэффициенты корреляции 64
- •Глава 10. Корреляционный анализ 147
- •Глава 11. Параметрические методы сравнения двух
- •Глава 12. Непараметрические методы сравнения
- •Глава 14. Назначение и классификация многомерных
- •Глава 1
- •Глава I. Генеральная совокупность и выборка
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2 измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Глава 3
- •Глава 3. Таблицы и графики Та блица 3.1 х3,-— самооценка до тренинга (порядковый),
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Глава 4
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Глава 6
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
Глава 5. Нормальный закон распределения и его применение
Таким образом:
□ если х, имеет нормальное распределение со средним М и стандартным отклонением о, то z = (х— Мх)/а характеризуется единичным нормальным распределением со средним 0 и стандартным отклонением 1;
П площадь между х, и х2 в нормальном распределении со средним Мх и стандартным отклонением о равна площади между Z\ = (xl — Мх)/а и Z2 = (x2 — Мх)/а в единичном нормальном распределении.
Итак, наиболее важным общим свойством разных кривых нормального распределения является одинаковая доля площади под кривой между одними и теми же двумя значениями признака, выраженными в единицах стандартного отклонения.
Полезно помнить, что для любого нормального распределения существуют следующие соответствия между диапазонами значений и площадью под кривой:
М±а соответствует«68% (точно — 68,26%) площади;
М±2о соответствует =95% (точно — 95,44%) площади;
М±3а соответствует =100% (точно — 99,72%) площади.
Единичное нормальное распределение устанавливает четкую взаимосвязь стандартного отклонения и относительного количества случаев в генеральной совокупности для любого нормального распределения. Например, зная свойства единичного нормального распределения, мы можем ответить на следующие вопросы. Какая доля генеральной совокупности имеет выраженность свойства от — \о до +1о? Или какова вероятность того, что случайно выбранный представитель генеральной совокупности будет иметь выраженность свойства, на За превышающую среднее значение? В первом случае ответом будет 68,26% всей генеральной совокупности, так как от — 1 до +1 содержится 0,6826 площади единичного нормального распределения. Во втором случае ответ: (100-99,72)/2 = 0,14%.
Полезно знать, что если распределение является нормальным, то:
90% всех случаев располагается в диапазоне значений М+ 1,64а;
95% всех случаев располагается в диапазоне значений М± 1,96с;
99% всех случаев располагается в диапазоне значений М+ 2,58с.
Существует специальная таблица, позволяющая определять площадь под кривой справа от любого положительного z (приложение 1). Пользуясь ею, можно определить вероятность встречаемости значений признака из любого диапазона. Это широко используется при интерпретации данных тестирования.
ПРИМЕРЫ
1. Значение IQ по шкале Векслера (Л/= 100; а = 15) некоторого тестируемого равно 125. Вопрос о степени выраженности интеллекта у данного индивидуума переформулируем следующим образом: насколько часто или редко встречаются значения IQ ниже или выше 125? Решение. Перейдем от шкалы IQ к единицам
53
Часть I. Основы измерения и количественного описания данных
стандартного отклонения (г-значениям): г=(125-100)/15= 1,66. По таблице из приложения 1 находим площадь под кривой справа от этого значения, она равна 0,0485. Это значит, что IQ 125 и выше встречается довольно редко — менее, чем в 5% случаев.
2. Какова вероятность того, что случайно выбранный человек будет иметь 1Q по шкале Векслера в диапазоне от 100 до 120? Решение. В единицах стандартного отклонения Zi =0,0; Zi = 1,66. Площадь справа от Z\ —0,5, справа от Zj — примерно 0,0918, следовательно, площадь между Z\ и г2 равна 0,5-0,0918 = 0,4082. Таким образом, вероятность того, что случайно выбранный человек будет иметь IQ в диапазоне от 100 до 120, равна примерно 0,41.
Несмотря на исходный постулат, в соответствии с которым свойства в генеральной совокупности имеют нормальное распределение, реальные данные, полученные на выборке, нечасто распределены нормально. Более того, разработано множество методов, позволяющих анализировать данные без всякого предположения о характере их распределения как в выборке, так и в генеральной совокупности. Эти обстоятельства иногда приводят к ложному убеждению, что нормальное распределение — пустая математическая абстракция, не имеющая отношения к психологии. Тем не менее, как мы увидим в дальнейшем, можно указать по крайней мере на три важных аспекта применения нормального распределения:
Разработка тестовых шкал.
Проверка нормальности выборочного распределения для принятия ре шения о том, в какой шкале измерен признак — в метрической или по рядковой.
Статистическая проверка гипотез, в частности — при определении риска принятия неверного решения.
РАЗРАБОТКА ТЕСТОВЫХ ШКАЛ
Тестовые шкалы разрабатываются для того, чтобы оценить индивидуальный результат тестирования путем сопоставления его с тестовыми нормами, полученными на выборке стандартизации. Выборка стандартизации специально формируется для разработки тестовой шкалы — она должна быть репрезентативна генеральной совокупности, для которой планируется применять данный тест. Впоследствии при тестировании предполагается, что и тестируемый, и выборка стандартизации принадлежат одной и той же генеральной совокупности.
Исходным принципом при разработке тестовой шкалы является предположение о том, что измеряемое свойство распределено в генеральной совокупности в соответствии с нормальным законом. Соответственно, измерение в тестовой шкале данного свойства на выборке стандартизации также должно обеспечивать нормальное распределение. Если это так, то тестовая шкала яв-
54