
- •Оглавление
- •Часть I
- •Глава 4. Первичные описательные статистики 40
- •Глава 5. Нормальный закон распределения и его
- •Глава 6. Коэффициенты корреляции 64
- •Глава 10. Корреляционный анализ 147
- •Глава 11. Параметрические методы сравнения двух
- •Глава 12. Непараметрические методы сравнения
- •Глава 14. Назначение и классификация многомерных
- •Глава 1
- •Глава I. Генеральная совокупность и выборка
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2 измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Часть I. Основы измерения и количественного описания данных
- •Глава 2. Измерения и шкалы
- •Глава 3
- •Глава 3. Таблицы и графики Та блица 3.1 х3,-— самооценка до тренинга (порядковый),
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 3. Таблицы и графики
- •Глава 4
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Глава 4. Первичные описательные статистики
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Часть I. Основы измерения и количественного описания данных
- •Глава 5. Нормальный закон распределения и его применение
- •Глава 6
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
- •Часть I. Основы измерения и количественного описания данных
- •Глава 6. Коэффициенты корреляции
- •Часть I. Основы измерения и количественного описания данных
Часть I. Основы измерения и количественного описания данных
Л
Общительность
Рис. 4.3. Графики распределения относительных частот общительности юношей (1) и девушек (2)
ОБРАБОТКА НА КОМПЬЮТЕРЕ
Способ 1. Выбираем Analyze > Descriptive Statistics > Frequencies... В открывшемся диалоговом окне (Frequencies) переносим из левой в правую часть интересующие нас переменные. Если таблица распределения частот нас не интересует, снимаем флажок Display frequency tables (Показывать таблицы частот). Нажимаем кнопку Statistics... Выбираем интересующие нас статистики и отмечаем их флажком: центральной тенденции (Central Tendency) — среднее (Mean), моду (Mode), медиану (Median); изменчивости (Dispersion) — стандартное отклонение (Std. deviation), дисперсию (Variance); распределения — асимметрию (Skewness) и эксцесс (Kurtosis). После этого нажимаем Continue, затем ОК и получаем результат.
Способ 2. Выбираем Analyze > Descriptive Statistics > Descriptives... В открывшемся диалоговом окне переносим из левой в правую часть интересующие нас переменные. Нажимаем кнопку Options... и отмечаем флажком те статистики, которые нас интересуют (см. выше). Нажимаем Continue, затем ОК и получаем результат.
Глава 5
НОРМАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ
Нормальный закон распределения играет важнейшую роль в применении численных методов в психологии. Он лежит в основе измерений, разработки тестовых шкал, методов проверки гипотез.
История применения закона нормального распределения в социальных и биологических науках начинается, по-видимому, с работы бельгийского ученого А. Кетле «Опыт социальной физики» (1835 г.). В ней он доказывал, что такие явления, как продолжительность жизни, возраст вступления в брак и появления первого ребенка и т. д., подчиняются строгой закономерности. Она проявляется в том, что чаще всего встречаются средние значения соответствующих показателей, и чем больше отклонение от этой средней величины, тем реже встречаемость таких отклонений. Одинаковые отклонения от среднего в меньшую и в большую сторону встречаются одинаково реже, чем среднее значение. Эту закономерность он назвал «законом уклонения от средней величины». В его исследованиях, и позднее — в исследованиях англичанина Ф. Галь-тона, было доказано, что распределение частот встречаемости любого демографического (продолжительность жизни и пр.) или антропометрического (рост, вес и пр.) показателя, измеренного на большой выборке людей, имеет одну и ту же «колоколо-
Частота
1250
152 165 178 191 РОСТ, CM
Рис. 5.1. Полигон частот для роста 8585 взрослых людей, родившихся в Англии в XIX в.1
' Гласе Дж., Стенли Дж. Статистические методы в педагогике и психологии. М., 1976. С. 98.
49
Часть I. Основы измерения и количественного описания данных
Де Муавр решал следующую задачу. Предположим, монета в азартной игре подбрасывается 10 раз, и каждый раз она может с равным успехом выпасть «орлом» или «решкой». Какова вероятность того, что в результате этой игры выпадет 0 «орлов», или 1 «орел», ..., 10 «орлов»? Сложные вычисления дают математически точное решение такой задачи (рис. 5.2). А если игра состоит из 100 подбрасываний монеты, или 1000? Де Муавру удалось доказать, что уравнение кривой, соединяющей вершины отрезков на рис. 5.2, для данного случая или для любой другой подобной задачи имеет следующую формулу:
(5.1)
где/(х,) — высота подъема кривой, е — основание натурального логарифма (примерно 2,718), л — число «пи» (примерно 3,14), Ми а — среднее и стандартное отклонения для переменной х„ которые определяют положение кривой на числовой оси и задают ее размах. Эта формула и соответствующая ей кривая (см. рис. 5.2) впоследствии получили название закона нормального распределения.
Итак, исход азартной игры, и продолжительность жизни, и рост человека — все это случайные события, частота (или вероятность) встречаемости которых подчинена закону нормального распределения. А. Кетле объяснял это существованием «идеала» человеческой природы, которому соответствуют средние значения различных пока-
8
10
1 2 3 4 5 6:
Число «орлов»
Рис. 5.2. График распределения вероятностей выпадения «орлов» в игре с 10 подбрасываниями монеты и кривая нормального распределения
50