
- •1. Дочисловой период обучения. Методика изучения устной и письменной нумерации однозначных чисел
- •2. Методика изучения устной и письменной нумерации в концентрах «Двузначные числа до 20», «Двузначные числа от 21 до 100»
- •При изучении нумерации в пределах 100 школьники должны получить следующие знания, умения и навыки:
- •3. Методика изучения устной и письменной нумерации в концентре «Трехзначные и четырехзначные числа»
- •Последовательность изучения нумерации:
- •4. Методика изучения устной и письменной нумерации в концентре «Многозначные числа»
- •5. Методика изучения табличных случаев сложения и вычитания в пределах 10
- •6. Методика изучения табличных случаев сложения и соответствующих случае вычитания в концентре «Двузначные числа до 20»
- •7. Методика изучения устного сложения и вычитания в концентре «Двузначные числа от 21 до 100»
- •8. Методика изучения письменного сложения и вычитания в концентре «Двузначные числа от 21 до 100»
- •Этапы знакомства с табличным умножением числа 2:
- •10. Методика изучения внетабличного умножения и деления, деление с остатком
- •11. Методика изучения приемов устного и письменного сложения и вычитания в концентре «Трёхзначные и четырёхзначные числа»
- •12. Методика изучения приемов устного и письменного умножения и деления в концентре «Трёхзначные и четырёхзначные числа»
- •13. Методика изучения приемов вычитания и сложения в концентре «Многозначные числа»
- •14. Методика изучения приемов письменного умножения в концентре «Многозначные числа»
- •15. Методика изучения приемов письменного деления на однозначное число в концентре «Многозначные числа»
- •16. Методика изучения приемов письменного деления на двузначное и трехзначное число в концентре «Многозначные числа»
- •17. Основные этапы решения задачи. Аналитико-синтетический поиск решения
- •I. Ознакомление с содержанием задачи.
- •II. Поиск решения - выдвижение плана решения задачи.
- •III. Процесс решения - реализация плана решения.
- •IV. Проверка решения задачи.
- •18. Функции задач в обучении. Классификация простых задач. Методика обучения решению задач на нахождение доли от числа и числа по его доле
- •Классификация задач
- •Задач и их функции
- •Методика обучения решению задач на нахождение доли от числа и числа по его доле
- •21. Методика обучения решению простых задач на увеличение (уменьшение) числа на несколько единиц, и в несколько единиц, задачи на разностное и кратное сравнение
- •22. Методика обучения решению задач на пропорциональные величины Задачи с пропорциональными величинами
- •23. Методика обучения числовых выражений, порядка выполнения арифметических действий
- •При изучении арифметических действий включаются упражнения на сравнения выражений, их делят на 3 группы.
- •24. Методика обучения решению задач составлением выражения и уравнения
- •25. Методика изучения переменной, обучение решению уравнений и неравенств с переменной
- •28. Методика ознакомления учащихся с измерением длинны и системой мер длины, с построение диаграмм. Обучение арифметическим действиям над величинами, выраженными мерами длины
- •29. Методика ознакомления учащихся с измерением массы и площади и системой мер массы и площади.
- •30. Методика знакомства учащихся с измерением времени и системой мер времени, с функциональной зависимостью
- •Развитие временных представлений о единицах измерения времени
- •Действия над числами, выраженными мерами времени
4. Методика изучения устной и письменной нумерации в концентре «Многозначные числа»
При изучении нумерации многозначных чисел можно выделить:
1. Знакомство с новыми счетными и разрядными единицами: десятком тысяч, сотней тысяч, единицей миллионов.
2. Счет до одного миллиона уже известными счетными единицами новыми: десятками тысяч и сотнями тысяч.
3. Отработка прочных навыков в расчете чисел до одного миллиона.
4. Знакомство с понятием класса единиц и класса тысяч.
5. Анализ многозначных чисел по десятичному составу, выделение у числа классов и разрядов, составление числа по данным классам разрядам.
Учащимся необходимо показать - где в практике, в жизни используются те многозначные числа, которые они изучают на уроках в школе. Нумерация многозначных чисел усваивается учащимися с большим трудом. Эти трудности связаны в первую очередь с тем, что многозначное число трудно контролировать. Наглядные пособия, которые используются при изучении данной темы: абак, счеты, таблица разрядов и классов.
Трудности, возникающие у учащихся при изучении также и темы «Нумерация многозначных чисел», неоднородны. Одни учащиеся довольно быстро усваивают нумерацию, но долго не могут постичь письменную нумерацию, для других оказывается проще усвоение письменной нумерации, а последовательность счета, десятичный анализ чисел усваивается медленнее с большим трудом.
Изучения нумерации многозначных чисел не должно ограничиваться только теми уроками, которые отводятся на первоначальное знакомство с этой темой. Упражнения на закрепление устной и письменной нумерации должны быть неотъемлемой частью почти каждого урока математики. Их следует включать в устный счет, арифметические диктанты. От сознательного усвоения нумерации зависит успех овладения арифметическими действиями.
Целесообразно следующая последовательность изучения:
1. Повторения нумерации в пределах 10,100,1000.
2. Нумерация целых тысяч до 10 000.
3. Нумерация четырехзначных чисел: а) счет сотнями, десятками, единицами до 10 000; б) образование и запись полных и неполных четырехзначных чисел; в) анализ чисел; г) округление числа до указательного разряда.
В такой же последовательности изучается нумерация в пределах 100 000 и 1000 000.
5. Методика изучения табличных случаев сложения и вычитания в пределах 10
Обучение сложению и вычитанию в пределах 10.
С арифметическими действиями учащиеся знакомятся сразу же после изучения числа 2. Изучение каждого из чисел первого десятка (кроме 1), завершается изучением действий сложения и вычитания в пределах этого числа. Действие сложение и вычитание изучаются параллельно.
Учащиеся знакомятся со знаками сложения - плюсом (+), вычитания- минусом (-) и знаком равенства - равно (=).
При изучении данной темы учащиеся должны овладеть
приемами вычисления,
получить прочные вычислительные навыки,
заучить результаты сложения и вычитания в пределах 10, а также состав чисел первого 10,
узнавать и показывать компоненты и результаты двух арифметических действий и понимать их названия в речи учителя.
По мере овладения учащимися натуральной последовательностью чисел и свойством этого ряда нужно знакомить и с приемами сложения и вычитания, опирающимся на это свойство натурального ряда чисел. Дети учатся этим приемам прибавлять и вычитать единицу из числа, т.е. присчитывать и отсчитывать по 1.
Когда учащиеся научились прибавлять и вычитать по одному, надо учить их прибавлять по два.
Когда учащиеся овладели приемами присчитывания, учитель знакомит их с приемами отсчитывания.
Если приемами присчитывания ученики первого класса овладевают довольно быстро, то приемами отсчитывания - намного медленнее.
Трудность состоит в том, что прием отсчитывания основан на хорошем знании обратного счета, а обратный счет для многих учащихся первого класса труден. Кроме того, ученики плохо запоминают - сколько нужно отнять, сколько уже отняли, сколько ещё надо отнять.
При изучении каждого числа первого десятка учащиеся получают представление и о составе этих чисел.
В начале необходимо давать такие упражнения, в которых одно из слагаемых воспринимаются детьми наглядно, а второе они отыскивают по представлению.
При выполнении действий сложения и вычитания в пределах данного числа вводятся решение примеров с отсутствующим компонентом. Его обозначают точками, рамками, знаками вопросов и т.д., например:
[] + I – 3, 4 +... = б, ? – 2 = 4. б - ? = 2.
Запишем 1-1=0 (отсутствие предметов обозначают цифры О) Решаются еще примеры, когда разность равна нулю.
Нуль сравнивается с единицей. Устанавливается, что ноль меньше единицы, единица больше нуля, поэтому ноль должен стоять перед единицей. Однако учитель должен помнить, что ноль не относится к натуральным числам. Поэтому ряд натуральных чисел должен начинаться с единицы.
Вводить число ноль в качестве вычитаемого, а потом и слагаемого следует на большом числе упражнений. Смысл действий с нулем будет лучше понять учащимся, если ноль в качестве вычитаемого и ноль в качестве слагаемого будет вводиться не одновременно. Затем проводятся упражнения на дифференциацию примеров, в которых ноль будет слагаемым и вычитаемым.
Полезно показать учащимся и зависимость изменения суммы от применения слагаемых, а также изменения остатка от изменения уменьшаемого.
Учитель первого класса должен обращать внимание учащихся на то, что сумма всегда больше каждого из слагаемых, а остаток всегда меньше уменьшаемых.
Уменьшаемое больше или равно вычитаемому, в противном случае вычитание произвести нельзя.
Уже с первого класса ученики должны быть приучены к проверке правильности решения примеров.