Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
варианты контрольных работ.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
149.5 Кб
Скачать

Вариант 10

Задание 1

Даны матрицы А и В. Найти: а)произведение матриц А и В; б) определитель матрицы А; в) матрицу, обратную к матрице А.

Задание 2

Решите систему линейных алгебраических уравнений а) методом обратной матрицы; б)методом Крамера; в)методом Гаусса.

Задание 3

Даны координаты точек А, В, С, Д. Найдите: а) скалярное произведение векторов АВ*3ВС; б) модуль векторного произведения ВА*ДС; в) смешанное произведение векторов АВ, ВД, СА; г)проверьте, лежат ли точки А, В, С, Д в одной плоскости.

А (-4, 5, -2), В(4, -3, 1), С(2 ,4,-6), Д (2, -1, 2)

Задание 4

Используя координаты точек из контрольного задания к теме 3, найдите: а) уравнение плоскости, проходящей через точки В, С, Д; б) уравнение плоскости, проходящей через точку В, перпендикулярно прямой АД; в) уравнение плоскости, проходящей через точку Д, параллельно векторам АВ и СВ; г) сумму длин отрезков, отсекаемых плоскостью, проходящей через точки В, С, Д (пункт а) на координатных осях.

Вариант 11

Задание 1

Даны матрицы А и В. Найти: а)произведение матриц А и В; б) определитель матрицы А; в) матрицу, обратную к матрице А.

Задание 2

Решите систему линейных алгебраических уравнений а) методом обратной матрицы; б)методом Крамера; в)методом Гаусса.

Задание 3

Даны координаты точек А, В, С, Д. Найдите: а) скалярное произведение векторов АВ*3ВС; б) модуль векторного произведения ВА*ДС; в) смешанное произведение векторов АВ, ВД, СА; г)проверьте, лежат ли точки А, В, С, Д в одной плоскости.

А (4, -4, 1), В(-3, 1, -4), С(4, 3, 4), Д (-2, 1, 5)

Задание 4

Используя координаты точек из контрольного задания к теме 3, найдите: а) уравнение плоскости, проходящей через точки В, С, Д; б) уравнение плоскости, проходящей через точку В, перпендикулярно прямой АД; в) уравнение плоскости, проходящей через точку Д, параллельно векторам АВ и СВ; г) сумму длин отрезков, отсекаемых плоскостью, проходящей через точки В, С, Д (пункт а) на координатных осях.

Вариант 12

Задание 1

Даны матрицы А и В. Найти: а)произведение матриц А и В; б) определитель матрицы А; в) матрицу, обратную к матрице А.

Задание 2

Решите систему линейных алгебраических уравнений а) методом обратной матрицы; б)методом Крамера; в)методом Гаусса.

Задание 3

Даны координаты точек А, В, С, Д. Найдите: а) скалярное произведение векторов АВ*3ВС; б) модуль векторного произведения ВА*ДС; в) смешанное произведение векторов АВ, ВД, СА; г)проверьте, лежат ли точки А, В, С, Д в одной плоскости.

А (-3, 4, -5), В(4, -2, 1), С(3 ,4,6), Д (-2, 1, 2)

Задание 4

Используя координаты точек из контрольного задания к теме 3, найдите: а) уравнение плоскости, проходящей через точки В, С, Д; б) уравнение плоскости, проходящей через точку В, перпендикулярно прямой АД; в) уравнение плоскости, проходящей через точку Д, параллельно векторам АВ и СВ; г) сумму длин отрезков, отсекаемых плоскостью, проходящей через точки В, С, Д (пункт а) на координатных осях.