
- •Расчет и конструирование трансформаторов
- •§ 1. Развитие электротехники и роль русских ученых в изобретении трансформатора
- •§ 2. Состояние отечественного трансформаторостроения до октябрьской революции и его развитие в годы советской власти
- •§ 3. Основная роль трансформатора в распределении электрической энергии
- •§ 1.2. Общее устройство силовых
- •§ 1.3. Основные материалы, применяемые в трансформаторостроении
- •§ 1.4. Влияние величины мощности трансформатора на его размеры, вес, потери и другие характеристики
- •§ 1.5. Классификация силовых трансформаторов по госТам. Разделение по габаритам. Обозначение типов
- •Контрольные вопросы
- •Глава II основные требования к расчету силовых трансформаторов § 2.1. Объем задания по расчету силового трансформатора
- •§ 2.2. Нормативы госТов на силовые трансформаторы. Допуски на задаваемые величины
- •§ 2.3. Схемы и группы соединений
- •§ 2.4. Выбор основных размеров (модели) магнитопровода
- •§ 2.5. Теория соразмерности и использование заводского опыта расчета для выбора модели
- •§ 3.2. Расчет обмоток. Расчет токов, числа витков и выбор размера проводов
- •§ 3.3. Выбор типа обмоток вн и нн, выбор изоляционных промежутков, размещение (раскладка) витков в окне магнитопровода, определение осевого и радиального строений обмоток
- •Контрольные вопросы
- •Глава IV расчет режима холостого хода трансформатора
- •§ 4.1. Эксплуатационные параметры (характеристики) холостого хода по госТу: потери и ток холостого хода
- •§ 4.2. Коэффициент трансформации
- •§ 4.3 Определение веса магнитопровода
- •§ 4.4. Расчет потерь холостого хода.
- •2. Удельные потери стали толщиной 0,5 мм на 25% выше.
- •3. Значения удельной намагничивающей мощности для стали марки э320 толщиной 0,36 и 0,5 мм на 20% выше данных таблицы; то же, для стали эззоа примерно соответствуют данными таблицы.
- •§ 4.5 Расчет тока холостого хода
- •§ 4.6. Активная и реактивная составляющие тока холостого хода
- •§ 4.7. Зависимость тока и потерь холостого хода от величины первичного напряжения
- •§ 4.8. Уравнение баланса э. Д. С. При холостом ходе
- •Контрольные вопросы
- •§ 5.2. Расчет потерь короткого замыкания
- •§ 5.3. Расчет добавочных потерь и потерь в отводах
- •§ 5.4. Потоки рассеяния при нагрузке трансформатора
- •§ 5.5. Вывод расчетной формулы напряжения рассеяния
- •§ 5.6. Расчет напряжения короткого замыкания
- •Контрольные вопросы
- •Глава VI изменение напряжения и коэффициент полезного действия § 6.1. Изменение напряжения трансформатора. Вывод расчетной формулы
- •§ 6.2. Внешняя характеристика трансформатора
- •§ 6.3. Расчет коэффициента полезного действия трансформатора
- •§ 6.4. Условия для получения наибольшего значения к. П. Д.
- •Контрольные вопросы
- •Глава VII дополнительное магнитное рассеяние и механические усилия
- •§ 7.1. Неравномерное распределение намагничивающих сил по высоте обмоток
- •§ 7.2. Расчет дополнительного реактивного падения напряжения от возникновения поперечного потока рассеяния
- •§ 7.3. Механические силы взаимодействия обмоток трансформатора
- •§ 7.4. Расчет радиальных и осевых механических усилий
- •Контрольные вопросы
- •Глава VIII расчет специальных трансформаторов
- •§ 8.1. Расчет автотрансформаторов. Распределение токов по ветвям обмотки. Типовая мощность
- •§ 8.2. Расположение обмоток автотрансформатора на стержнях магнитопровода
- •§ 8.3. Трехфазные автотрансформаторы
- •§ 8.4. Расчет трехобмоточных трансформаторов. Основные сведения. Режим холостого хода
- •§ 8.5. Режим нагрузки трехобмоточных трансформаторов. Расчет потерь и напряжения короткого замыкания
- •§ 8.6. Расчет индивидуальных падений напряжения трехобмоточного трансформатора
- •§ 8.7. Расчет изменения напряжения и к. П. Д. При различных распределениях нагрузки по вторичным обмоткам трехобмоточного трансформатора
- •§ 8.8. Расчет трансформаторов для питания ртутных выпрямителей
- •§ 8.9. Одно- и многофазные схемы выпрямления переменного тока при помощи ртутного выпрямителя и питающего его трансформатора
- •§ 8.10. Определение среднего значения выпрямленного напряжения
- •§ 8.11. Типовая мощность трансформатора для питания ртутных выпрямителей
- •§ 8.12. Сглаживающие фильтры
- •Контрольные вопросы
- •Глава IX регулирование напряжения трансформатора § 9.1. Требования госТа к регулированию напряжения
- •§ 9.2. Регулирование напряжения переключением без возбуждения. Прямая и оборотная схемы обмоток
- •§ 9.3. Регулирование напряжения под нагрузкой. Применяемые схемы
- •§ 9.4. Устройство и схема работы переключающего устройства
- •§ 9.5. Определение значений сопротивлений токоограничивающих реакторов и резисторов
- •§ 9.6. Схемы рпн с плавным регулированием напряжения
- •Контрольные вопросы
- •Глава X тепловой расчет трансформатора § 10.1. Нагревание частей трансформатора от его потерь
- •§ 10.2. Нормы нагрева и методы измерения температуры
- •§ 10.3. Способы теплопередачи от обмотки и масла через стенки бака и охлаждающие устройства в окружающую среду
- •§ 10.4. Расчет установившегося превышения температуры обмотки относительно температуры масла
- •§ 10.5. Расчет установившегося превышения температуры масла относительно температуры окружающего воздуха
- •§ 10.6. Охлаждающие устройства масляных трансформаторов. Расчет охлаждаемой (теплоотдающей) поверхности
- •§ 10.7. Неустановившееся тепловое состояние трансформатора
- •Контрольные вопросы
- •Глава X типы и устройство магнитопроводов § 11.1. Электротехническая сталь
- •§ 11.2. Типы одно- и трехфазных магнитопроводов
- •§ 11.3. Стыковые и шихтованные магнитопроводы
- •§ 11.4. Схемы шихтовки одно- и трехфазных магнитопроводов
- •§ 11.5. Влияние схем шихтовки и величины воздушных (немагнитных) зазоров на характеристики холостого хода
- •Контрольные вопросы
- •Глава XII типы и устройство обмоток § 12.1. Общие требования
- •§ 12.2. Обмоточные провода и типы обмоток
- •§ 12.3. Направление намотки катушек
- •§ 12.4. Цилиндрическая слоевая обмотка
- •§ 12.5. Катушечная слоевая (секционная) обмотка
- •§ 12.6. Дисковая и непрерывная обмотки
- •§ 12.7. Винтовая одкс и двухходовая обмотки
- •§ 12.8. Выполнение и расчет транспозиции в винтовой обмотке
- •§ 12.9. Примеры расчета равномерно-распределенной транспозиции
- •§ 13.2. Требования, предъявляемые к электрической прочности изоляции трансформатора
- •§ 13.3. Методы испытания изоляции и нормы испытательныхнапряжений
- •U’л и u’’л - номинальные напряжения обмоток
- •§ 13.4. Воздействие перенапряжений на изоляцию
- •§ 13.5. Выполнение защиты для силовых трансформаторов напряжением до 35 кв
- •§ 13.6. Емкостная компенсация трансформаторов напряжением 110 кв и выше
- •§ 13.7. Продольная емкостная компенсация внутренних обмоток
- •§ 13.8. Слоевые обмотки
- •§ 13.9. Методика выбора размеров главной и продольной изоляции при расчете силового трансформатора
- •Из электродов
- •Контрольные вопросы
- •Глава XIV конструирование трансформаторов § 14.1. Общие вопросы конструирования трансформатора. Увязка конструктивной разработки с расчетом и технологией изготовления
- •§ 14.2. Конструкция магнитопровода. Разработка поперечного сечения стержней и ярм. Раскрой стали. Стяжка пластин магнитопровода. Магнитопроводы из холоднокатаной стали. Бесшпилечная прессовка.
- •§ 14.3. Конструкция обмоток. Главная и опорная изоляции. Радиальное и осевое строение обмоток. Уравнительная изоляция
- •§ 14.5. Вспомогательные устройства: газовое реле, выхлопнаятруба, пробивной предохранитель. Установка термометров. Устройства для защиты масла от окисления и загрязнения
- •§ 14.6. Вводы масляных трансформаторов. Конструкция вводов классов напряжения 0,5-ню кв. Требования, предъявляемые к внешней изоляции. Шинные вводы
- •Гайка латунная; 12—шпилька медная.
- •§ 14.7. Переключатели и отводы обмоток. Типы и конструкция переключателей для схем пбв. Ребования, предъявляемые к конструкции переключателей. Конструкция и расчет сечения
- •Контрольные вопросы
- •Глава XV испытания, монтаж и эксплуатация трансформаторов § 15.1. Контрольные и типовые испытания трансформаторов. Испытания баков
- •Лампа; 6 —кнопка сигнала на пульт
- •§ 15.2. Способы транспортирования, порядок хранения и монтаж трансформаторов
- •§ 15.3. Основные правила технической эксплуатации трансформаторов. Релейная защита от коротких замыканий
- •§ 15.4. Нагрузочная способность трансформаторов
- •§ 15.5. Возможные неисправности и методы их устранения
- •Контрольные вопросы
- •Глава XVI расчет стоиости и экономической эффективности трансформатора. § 16.1. Расчет стоимости трансформатора
- •§ 16.2. Расчет экономической эффективности
- •Глава XVII перспективы развития трднсформаторостроения в ссср
- •Глава XVII курсовое проектирование § 18.1. Задание на проектирование силового трансформатора с масляным охлаждением на напряжение от 3 до 35 кв
- •§ 18.2. Примеры расчета трансформаторов Пример 1
- •Пример 2
- •§ 18.3. Электромагнитный расчет трансформатора мощностью 1000 ква, 10 кв Расчет магнитопровода.
- •Расчет обмоток
- •Определение весов активных материалов
- •Расчет характеристик
- •§ 18.4. Тепловой расчет трансформатора мощностью 1000 ква
- •§ 18.5. Расчет механических усилий в обмотках трансформатора мощностью 1000 ква
- •§ 18.6. Электромагнитный расчет трансформатора мощностью 2500 ква 35 кв Расчет магнитопровода
- •Расчет обмоток
- •Определение весов активных материалов
- •Расчет характеристик
- •§18.7. Тепловой расчет трансформатора мощностью 2500 ква
- •§ 18.8. Расчет механических усилий в обмотках трансформатора мощностью 2500 ква
- •§18.9. Графическая часть курсового проекта
- •Литература
§ 11.2. Типы одно- и трехфазных магнитопроводов
Однофазный магнитопровод может быть двух основных видов: стержневой (рис. 11.2) и броневой (рис. 11.3). Стержневым называется магнитопровод, имеющий два стержня, на которые насажены обмотки, и два ярма, замыкающие стержни. Обмотки размещаются на обоих
Рис. 11.2 Однофазный стержневой магнитопровод
Рис. 11.3 Однофазный броневой магнитопровод
стержнях, причем на каждом стержне помещаются обе обмотки ВН и НН, разделенные для этого на две части каждая. Такое размещение обмоток, при котором на одном стержне была бы обмотка ВН, а на другом НН, недопустимо вследствие резкого повышения реактивного падения напряжения Up от возникновения больших потоков рассеяния. Броневым называется магнитопровод с разветвленной магнитной цепью, имеющий один стержень, несущий обмотки и ярма, замыкающие стержень с двух сторон. Так как магнитный поток, выходящий из стержня, разветвляется на две части, то сечения ярм броневого магни-топровода имеют сечение, равное 50% сечения стержня.
Для однофазных трансформаторов малых мощностей преимуществом пользуются броневые магнитопроводы. Для силовых трансформаторов, где требуется иметь большую поверхность охлаждения обмоток
Рис. 11.4. Образование трехфазного магнитопровода путем совмещения трех однофазных стержневых магнитопроводов
и уменьшить (примерно вдвое) рассеяние, предпочтение отдается стержневым магнитопроводам.
Устройство трехфазного магнитопровода требует предварительного
принципиального обоснования.
Электрическая энергия в промышленных целях получается и используется в виде главным образом трехфазной системы переменного тока. Трехфазная система представляет собой систему трех однофазных переменных э. д. с, имеющих одинаковую частоту и сдвинутых по фазе относительно друг друга на угол 120°, т. е. на V8 периода.
Очевидно, что трансформация трехфазного тока возможна тремя отдельными однофазными трансформаторами, каждая из обмоток которых соединена в одну из трехфазных схем (в звезду или в треугольник).
Но, как это показал в 1891 г. русский электротехник М. О. Доливо-Добровольский, трансформация при трехфазной системе возможна также одним трехфазным трансформатором, имеющим общую магнитную цепь для трех фаз.
Трехфазный магнитопровод может быть получен путем совмещения трех однофазных стержневых магнитопроводов в один общий магнитопровод с некоторым дальнейшим преобразованием его формы. Для этого нужно взять три однофазных стержневых магнитопровода с одним стержнем, несущим обмотки, и сложить их вместе необмотанными (свободными) стержнями (рис. 11.4, а). Для простоты рисунка каждый магнитопровод показан одной жирной линией. Так как магнитные потоки во всех магнитопроводах синусоидальны по форме, равны между собой и сдвинуты на 120°, то на основании формулы суммы синусов
sin a + sin (а + 120°) + sin (а + 240°) = 0
сумма потоков в примыкающих друг к другу стержнях равна нулю и поэтому эти стержни можно отнять за ненадобностью. Превратив далее полученную пространственную симметричную форму магнитопровода (рис. 11.4, б, в) в плоскую, получим ныне применяемую форму трехфазного стержневого магнитопровода (рис. 11.4, г).
Трехфазный стержневой магнитопровод является несимметричным в отношении магнитных сопротивлений для потоков средней и крайних фаз. Это может быть пояснено на рис. 11.5.
Рис. 11.5. Потоки разных фаз в трехфазном несимметричном магнитопроводе:
а — поток фазы Л; б — поток фазы В
Поток фазы В проходит по более короткому пути, чем потоки фаз А и С. В связи с этим магнитное сопротивление для потока средней фазы В примерно в 2 — 2,5 раза меньше, чем для крайних фаз А и С, поэтому ток холостого хода у фазы В тоже меньше, чем у остальных фаз.
Так как фазные токи холостого хода у трехфазного трансформатора не равны между собой, то при проведении опыта холостого хода за величину тока холостого хода условно принимают его среднее значение по трем фазам
I0= (I1 +I2 +I3)/3.
При расчете тока холостого хода трехфазного трансформатора также определяется его среднее значение, так как берется общий вес стали магнитопровода и общее число стыков пластин.