
- •1Принцип Парето: формулировки и сомнения
- •2Математика и магия чисел
- •2.1Математическая формулировка
- •2.2Магия чисел
- •2.3Логическое противоречие
- •2.4Пример из практики – комплектация телевизоров
- •3Ложные следствия и ограничения правила Парето
- •3.1Ложные следствия
- •3.2Многокритериальность
- •3.3Неаддитивность
- •3.4Неопределенность во времени
- •4Доказательство верности правила 80/20
- •4.1Группировка объектов
- •4.2Неизмеримость и недостаток информации
- •4.3Психологическое доказательство верности правила 80/20
- •5Заключение. Принцип Дисбаланса
- •6Список литературы
Тимур Василенко
Миф о 80/20
Вопрос психиатра: известно, что при железнодорожной катастрофе большинство погибших бывает в первом вагоне. Вы собираетесь ехать на поезде. Какие выводы?
Ответ пациента: Надо отцепить первый вагон.
1Принцип Парето: формулировки и сомнения
В литературе по менеджменту (в основном – в популярной или посвященной time-менеджменту) обязательно упоминается так называемый принцип Парето или правило 80/20. Вот некоторые его формулировки:
20% клиентов (товаров) дают 80% оборота или прибыли;
20% ошибок обусловливают 80% потерь;
20% исходных продуктов определяют 80% стоимости готового изделия;
за 20% расходуемого времени достигается 80% результатов ([1], с.111)
80% ваших посетителей смотрит только 20% страниц вашего сайта ([8])
20% преступников виновны в 80% преступлений ([7])
Применение этого правила к управлению запасами носит название ABC-анализа (от деления запасов на 3 группы A, B и C, первая из которых находится на постоянном контроле, вторая – на системе периодического дозаказа, а третья планируется и закупается на год. Не путать с ABC – Activity Based Costing, функционально-стоимостным анализом – сокращения одинаковые, сущность разная). Данная система, пожалуй, наиболее разработанное применение правила 80/20 (см. пример в [2], с.177-179). Развернутая история и интерпретация этого принципа содержится в статье [7].
Первоначальная, историческая формулировка – 80% всех богатств принадлежит 20% населения. Именно она встречается в сочинениях Вильфредо Парето, который утверждал, что «способ распределения доходов, по существу, является одним и тем же в разных странах и в различные исторические эпохи» [3]. Согласитесь, это более сильное и более осмысленное утверждение, чем популярный принцип 80/20.
Настораживает и другой факт. Почему в книгах, являющихся энциклопедиями приемов менеджмента ([4], [5]), нет упоминания (во всяком случае, я не нашел) о принципе Парето или правиле 80/20. Чем-то он показался авторам сомнительным, если они решили не включать его в свои книги. В сети есть замечательная статья [6], посвященная анализу применения этого принципа. В ней обращается внимание на то, что в литературе отсутствует масса примеров успешного применения этого принципа. Что-то неладно с этим принципом.
Я намереваюсь показать, что правило 80/20 не укоренено в реальности и имеет чисто психологический характер. Для этого нам понадобятся логика и немного математики – в пределах школьного курса.
2Математика и магия чисел
«20% товаров дают 80% прибыли» – очень яркая, запоминающаяся формулировка. 20% товаров дают 100%–20%=80% прибыли. Соответственно оставшиеся 100%–20%=80% товаров дают 100%–80%=20% прибыли. Замечательная кососимметричность! Именно она сделала этот принцип столь знаменитым.
Чтобы разобраться в природе принципа Парето, рассмотрим его математический смысл.
2.1Математическая формулировка
Есть список объектов или видов объектов (товаров) T1, T2... Tn и есть некоторый измеримый результат (прибыль), который является аддитивной функцией от объектов (общая прибыль является суммой прибылей от всех товаров), R(T1,T2...Tn)=R(T1)+R(T2)+…R(Tn). Так вот, принцип Парето гласит:
(1) Существует такое число 0<a<0,5, что объекты можно разбить на две группы M1 и M2 так, что численность группы M1 будет равна a*n, а результат R(M1)=(1–a)*R(M1,M2), т.е. 1-a от общего результата всех объектов,
(2) и при этом a=0,2 (20%).
В такой формулировке видно, что принцип Парето распадается на две части – наличие точки кососимметричности a (точки Парето), и утверждения о значении этой точки a=0,2. Докажем сначала первую часть – что точка Парето существует.
Рассмотрим гистограмму результатов по объектам, предварительно упорядочив по убыванию результата. А теперь построим гистограмму накопленного результата и приблизим ее непрерывным графиком.
В дальнейших рассуждениях мы будем рассматривать непрерывный график результата, т.е. считаем, что объектов у нас очень много (пример – население страны, несколько тысяч товаров супермаркета). Итак, y=f(x) – график результата, линия красного цвета. График построен в безразмерных единицах – 1 по оси абсцисс соответствует полная совокупность объектов, 100% от их количества; 1 по оси ординат соответствует суммарный результат от полного набора объектов. Где же должна лежать точка Парето? – На прямой y=1–x, именно это равенство выражает искомую кососимметричность, толстая прямая синего цвета.
Их пересечение дает искомую точку Парето, точку a, такую, что f(a)=1–a. График y=f(x) строго возрастает, более того – это выпуклая функция (вспоминаем, что объекты мы упорядочивали по убыванию результата, т.е. производная убывает). Отсюда следует, что график функции результата всегда лежит выше прямой y=x (зеленая прямая) и совпадает с ней в одном случае – когда все объекты имеют одинаковый результат, равномерное распределение. Тем самым мы доказали, что искомая точка Парето всегда существует, ее значение меньше 0,5 и равно ему в единственном случае – равномерного распределения результата по объектам.
Из этого графика видно, как мы можем итерационно продолжить Парето-анализ. Если мы рассмотрим ограничение функции на интервале (0, a), то можем построить точку Парето второго порядка (тот же красный график и тонкая синяя прямая; точка Парето-2 показана пунктиром). Аналогично можем поступить на интервале (a, 1) и так далее.