Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
464.06 Кб
Скачать

3.2 Классификация и общее назначение электротехнического оборудо­вания, электрических станций и подстанций

Электрические схемы ТЭЦ с агрегатами 30—60 МВт. Электростанции этого типа выдают большую часть мощности ближайшим потребителям при напряжении 6—10 кВ непосредственно от генератора без промежуточной трансформации. Связь станций с системой для на мощностью осуществляется при более высоких напряжениях 220 кВ. К сборным шинам главного РУ 6—10 кВ присоединяют генераторы, линии местной распределительной сети, реакторы или трансформаторы с.н., а также трансформаторы связи. Через последние часть мощности выдается в сеть высшего напряжения. В случае, если генераторы не могу обеспечить энергией местных потребителей, недостающая мощность может быть получена из энергосистемы.

Рисунок 2 – типовая схема РУ 6-10 кВ ТЭЦ с агрегатами по 60 МВт

При параллельном включении сборные шины нескольких генераторов указанной мощности с напряжением 6—10 кВ ток к.з. получается значительным. Возникает необходимость в его ограничении значений, соответствующих отключающей способности серийных выключателей (номинальный ток отключения наиболее мощного выключателя 6—10 кВ типа МГ-10 составляет 105 кА). С этой целью сборные шины разделяют на секции и соединяют их через секционные реакторы и выключатели, число секций зависит от числа генераторов, их мощности и напряжения. Обычно число секций находит в пределах от двух до четырех.

Секционные реакторы позволяют ограничить ток к.з. приблизительно в 1,5—2 раза, что обычно статочно для выполнения РУ с выключателями указанного типа. Дальнейшее ограничение тока кабельной распределительной cети и на подстанциях до экономически целесообразных значений (примерно 10- 5 кА) достигается с помощью линейных реакторов.

При нормальном режиме через секционные реакторы проходит некоторый ток, и на­пряжения на секциях несколько отличны. В случае отключения части генераторов или одного из трансформаторов ток через секционные реакторы увеличивается. Увеличиваются и отклонения напряжения на секциях сборных шин от нормального. Замыкание сборных шин в кольцо способствует лучшему об­мену мощностью между секциями. Однако замыкание в кольцо приводит к увеличению тока к.з. Кроме того, оно требует дополнительных затрат на установку секционного реактора и выключателя, а также на устройство перемычки между секциями. Поэтому вопрос о замыкании сборных шин в кольцо решают по-разному, в зависимости от условий. Если сборные шины не замкнуты в кольцо, трансформаторы вязи должны быть присоединены к крайним секциям.

В РУ с секционными реакторами обычно предусматривают коммутационные аппараты—выключатели или разъединители с целью временного шунтирования реакторов. К шунтированию прибегают при отключении части генераторов или трансформаторов, чтобы уменьшить отклонения напряжения на секциях сборных шин от нормального. Возможность такого шунтирования должна быть проверена с соответствующим расчетом ожидаемого тока к. з.

Распределительные устройства с двумя системами сборных шин размещают в двухэтажных зданиях. Объем строительных и монтажных работ относительно велик. РУ с од­ной системой сборных шин значи­тельно проще, стоимость их ниже. Опыт эксплуатации таких устройств показал, что надежность их нисколь­ко не ниже соответствующих уст­ройств с двумя системами шин. Номиналь­ные токи реакторов выбирают с та­ким расчетом, чтобы в случае вы­нужденного отключения секции сборных шин оставшиеся в работе реакторы могли пропустить рабочий ток сети.

Для питания системы с. н. в устройствах 6 кВ предусмотрены отдельные линии с одиночными ре­акторами на каждой секции. Линии резервного питания присоединены не к сборным шинам, а к присоеди­нениям трансформаторов связи на участке между выключателем и

трансформатором. Такая схема обеспечивает замену рабочей линии с. н. резервной при повреждении секции сборных шин. В РУ 10 кВ для питания системы с. н. предусмотрены понижающие трансформаторы 10,5/6,3 кВ, присоединенные к РУ аналогично сказанному выше.

Для шунтирования секционных реакторов предусмотрены разъеди­нители. Шунтирование и дешунтирование реактора с помощью разъеди­нителя производят только при отключенном секционном выключа­теле. При этом соблюдается следующий порядок операций: сначала размыкают секционный выключатель, потом включают (или отключа­ют) шунтирующий разъединитель и опять включают секционный выклю­чатель. Во избежание неправильных операций с шунтирующими разъе­динителями их приводы блокированы с приводами соответствующих секционных выключателей. При размыкании секционных выключателей синхронная работа генераторов не нарушается, так как секции сборных шин связаны между собой через трансформаторы и сборные шины высшего напряжения.

Классификация подстанций

Функционально подстанции делятся на:

  • Трансформаторные подстанции — подстанции, предназначенные для преобразования электрической энергии одного напряжения в энергию другого напряжения при помощи трансформаторов.

  • Преобразовательные подстанции — подстанции, предназначенные для преобразования рода тока или его частоты.

Электрическое распределительное устройство, не входящее в состав подстанции, называется распределительным пунктом. Преобразовательная подстанция, предназначенная для преобразования переменного тока в постоянный и последующего преобразования постоянного тока в переменный исходной или иной частоты называется вставкой постоянного тока.

По значению в системе электроснабжения:

  • Главные понизительные подстанции (ГПП);

  • Подстанции глубокого ввода (ПГВ);

  • Тяговые подстанции для нужд электрического транспорта, часто такие подстанции бывают трансформаторно-преобразовательными для питания тяговой сети постоянным током;

  • Комплектные трансформаторные подстанции 10 (6)/0,4 кВ (КТП). Последние называются цеховыми подстанциями в промышленных сетях, городскими — в городских сетях.

В зависимости от места и способа присоединения подстанции к электрической сети нормативные документы не устанавливают классификации подстанций по месту и способу присоединения к электрической сети. Однако ряд источников даёт классификацию исходя из применяющихся типов конфигурации сети и возможных схем присоединения подстанций.

  • Тупиковые — питаемые по одной или двум радиальным линиям

  • Ответвительные — присоединяемые к одной или двум проходящим линиям на ответвлениях

  • Проходные — присоединяемые к сети путём захода одной линии с двухсторонним питанием

  • Узловые — присоединяемые к сети не менее чем тремя питающими линиями

Ответвительные и проходные подстанции объединяют понятием промежуточные, которое определяет размещение подстанции между двумя центрами питания или узловыми подстанциями. Проходные и узловые подстанции, через шины которых осуществляются перетоки мощности между узлами сети, называют транзитными.

Также используется термин «опорная подстанция», который, как правило обозначает подстанцию более высокого класса напряжения по отношению к рассматриваемой подстанции или сети.

В связи с тем, что ГОСТ 24291-90 определяет опорную подстанцию как «подстанцию, с которой дистанционно управляются другие подстанции электрической сети и контролируется их работа», для указанного выше значения целесообразнее использовать термин «центр питания».

По месту размещения подстанции делятся на:

  • Открытые — оборудование которой расположено на открытом воздухе.

  • Закрытые — подстанции, оборудование которых расположено в здании.

Электроподстанции могут располагаться на открытых площадках, в закрытых помещениях (ЗТП — закрытая трансформаторная подстанция), под землёй и на опорах (МТП — мачтовая трансформаторная подстанция), в специальных помещениях зданий-потребителей. Встроенные подстанции — типичная черта больших зданий и небоскрёбов.

Подстанция, в которой стоят повышающие трансформаторы, повышает электрическое напряжение при соответствующем снижении значения силы тока, в то время как понижающая подстанция уменьшает выходное напряжение при пропорциональном увеличении силы тока.

Необходимость в повышении передаваемого напряжения возникает в целях многократной экономии металла, используемого в проводах ЛЭП, и уменьшения потерь на активном сопротивлении. Действительно, необходимая площадь сечения проводов определяется только силой проходящего тока и отсутствием возникновения коронного разряда. Также уменьшение силы проходящего тока влечёт за собой уменьшение потери энергии, которая находится в прямой квадратичной зависимости от значения силы тока. С другой стороны, чтобы избежать высоковольтного электрического пробоя, применяются специальные меры: используются специальные изоляторы, провода разносятся на достаточное расстояние и т. д. Основная же причина повышения напряжения состоит в том, что чем выше напряжение, тем большую мощность и на большее расстояние можно передать по линии электропередачи.

Основные элементы электроподстанций:

  • Силовые трансформаторы, автотрансформаторы.

  • Вводные конструкции для воздушных и кабельных линий электропередачи.

  • Открытые (ОРУ) и закрытые (ЗРУ) распределительные устройства, включая:

    • Системы и секции шин;

    • Силовые выключатели;

    • Разъединители;

    • Измерительное оборудование (измерительные трансформаторы тока и напряжения, измерительные приборы);

    • Оборудование ВЧ-связи между подстанциями (конденсаторы связи, фильтры присоединения);

    • Токоограничивающие, регулирующие устройства (конденсаторные батареи, реакторы, фазовращатели и пр.).

    • Преобразователи частоты, рода тока (выпрямители).

  • Система питания собственных нужд подстанции:

    • Трансформаторы собственных нужд;

    • Щит переменного тока;

    • Аккумуляторные батареи;

    • Щит постоянного (оперативного) тока;

    • Дизельные генераторы и другие аварийные источники энергии (на крупных и особо важных подстанциях).

  • Системы защиты и автоматики:

    • Устройства релейной защиты и противоаварийной автоматики для силовых линий, трансформаторов, шин.

    • Автоматическая система управления.

    • Система телемеханического управления.

    • Система технического и коммерческого учёта электроэнергии.

    • Система технологической связи энергосистемы и внутренней связи подстанции.

  • Система заземления, включая заземлители и контур заземления.

  • Молниезащитные сооружения.

  • Вспомогательные системы:

    • Система вентиляции, кондиционирования, обогрева.

    • Система автоматического пожаротушения.

    • Система освещения территории.

    • Система охранно-пожарной сигнализации, управления доступом.

    • Система технологического и охранного видеонаблюдения.

    • Устройства плавки гололёда на воздушных линиях.

    • Системы аварийного сбора масла.

    • Системы питания маслонаполненных кабелей.

  • Бытовые помещения, склады, мастерские и пр

Режимы работы электрооборудования

Нормальный режим работы электрооборудования – режим работы электрооборудования, отличающийся рабочими значениями всех своих параметров.

Ремонтный режим – это режим плановых профилактических и капитальных ремонтов.

Аварийный режим работы электроустановки – режим работы, сопровождающийся отклонением рабочих параметров от предельно-допустимых значений, характеризующийся повреждением, выходу из строя электрооборудования, возможным перерывом электроснабжения или представляющий угрозу жизни людей.

Послеаварийный режим — это режим, в котором часть элементов электроустановки вышла из строя или выведена в ремонт вследствие аварийного (непланового) отключения. При этом режиме возможна перегрузка оставшихся в работе элементов электроустановки.