
- •Соотношение объемов продукции, отгруженной цементными заводами России за 1990-1991 г.Г.
- •2. Проектирование в системе подготовки инженера по химической технологии вяжущих материалов
- •2.1. Общие положения
- •2.2. Курсовой проект
- •2.2.1. Состав и содержание курсового проекта
- •2.2.2. Оформление и защита курсового проекта
- •2.3.Дипломное проектирование
- •2.4. Основные требования к оформлению чертежей
- •Этапы проектирования цементных заводов
- •3.1. Схема развития и размещения отрасли
- •3.2. Технико-экономическое обоснование строительства (тэо). Технико-экономические расчеты (тэр)
- •3.3. Проект и рабочий проект. Основные разделы
- •4.1. Заводы, работающие по мокрому способу производства
- •4.2 Заводы, работающие по сухому способу производства
- •4.3 Перспективные цементные заводы
- •5.1 Цели системы автоматизированного проектирования (сапр)
- •5.2. Состав сапр
- •5.3. Функционирование сапр
- •5.4. Основные пакеты прикладных программ (ппп) технологической подсистемы сапр-цемент
- •5.4.1. Ппп сырьё
- •5.4.2. Ппп баланс
- •5.4.3. Ппп выбор
- •5.4.4. Ппп анализ
- •5.4.5. Ппп транспорт
- •5.4.6. Ппп задание
- •Современные технологические решения основных переделов цементного производства
- •6.1. Сырьевые материалы для производства портландцементного клинкера и цемента
- •6.2. Технология добычи сырья
- •6.2.1 Исходные материалы для проектирования карьеров цементного сырья
- •6.2.2 Добыча и транспортирование сырья
- •6.3. Дробление и помол сырьевых материалов
- •6.3.1. Примеры технологических схем дробления
- •6.3.2. Помол сырьевых материалов
- •6.4. Системное проектирование технологических схем приготовления сырьевой смеси
- •6.4.1. Технология приготовления сырьевой смеси заданного состава
- •6.5. Обжиг портландцементных сырьевых смесей
- •6.6 Подготовка технологического топлива к сжиганию
- •6.6.1. Твердое топливо
- •6.6.2. Газообразное топливо
- •6.6.3. Жидкое топливо
- •6.7 Помол цементной шихты
- •6.8. Хранение, отгрузка и упаковка цемента
- •6.9. Технологический контроль
- •Оборудование цементных заводов
- •7.1. Дробильное оборудование
- •Технические характеристики отечественных щековых дробилок
- •Технические характеристики конусных дробилок крупного дробления
- •Технические характеристики двухроторных дробилок фирмы «Бюлер-Миаг»
- •Технические характеристики сда
- •Технические характеристики дробилок типа peg
- •Технические характеристики дробилок типа «Хардопакт»
- •Технические характеристики сушильных барабанов
- •7.2. Оборудование для сушки сырьевых материалов
- •7.3. Оборудование для помола сырья
- •Технические характеристики вихревых и с русловым кипящим слоем и дробилок-сушилок
- •Технические характеристики сушилок-дробилок фирмы «Хацемаг» (Германия)
- •Технические характеристики мельниц мокрого помола сырьевых материалов
- •Роликовые (валковые) мельницы
- •Зависимость производительности мельниц «Гидрофол» от вида измельчаемой породы
- •Технические характеристики мельниц самоизмельчения «Гидрофол»
- •Технические характеристики мельниц самоизмельчения «Аэрофол»
- •Производительность и мощность привода мельниц Лёше
- •Технические характеристики тарельчато-роликовых мельниц внииЦеммаш
- •Производительность мельниц Петерса, т/ч
- •7.4. Печные агрегаты
- •7.4.1. Вращающиеся печи мокрого способа производства
- •7.4.2. Вращающиеся печи сухого способа производства
- •Технические характеристики печных агрегатов мокрого способа производства
- •Технические характеристики печных агрегатов сухого способа производства
- •7.4.3. Печные агрегаты комбинированного способа производства /
- •7.4.4. Проектирование цехов обжига
- •7.5. Оборудование для помола цементной шихты
- •7.5.1. Цементные мельницы
- •Перечень цементных мельниц, эксплуатируемых в цементной промышленности
- •7.5.2. Сепараторы
- •Технические характеристики цементных мельниц
- •Техническая характеристика центробежных сепараторов с выносными циклонами
- •7.6. Приемные устройства и склады
- •7. 6.1. Типы складов и приемных устройств
- •7.6.2. Проектные решения складов
- •7.7. Оборудование для аспирации и обеспыливания технологических процессов
- •Характеристика способов борьбы с пылевыделением методом гидроподавления
- •Типы пылеуловителей и область их применения
- •Эффективность очистки газа от пыли в циклонах
- •Средняя производительность циклонных элементов
- •Характеристика пылеулавливающего оборудования
- •8.1. Расчет портландцементной сырьевой смеси
- •8.2. Материальный баланс
- •8.2.1. Расчет мощности завода по клинкеру и цементу
- •Производительность и коэффициент использования вращающихся печей*
- •8.2.2 Определение удельного расхода сырьевых материалов, топлива и вспомогательных материалов
- •8.2.3 Режим работы производственных отделений и годовой фонд рабочего времени
- •8.2.4 Основные условия расчета материального баланса завода
- •8.2.5 Примеры расчета некоторых статей материального баланса
- •1596144 Влажного.
- •Материальный баланс завода
- •8.2.6 Определение количества и производительности основного технологического оборудования
- •Коэффициент использования технологического оборудования
- •8.3 Поверочные расчеты производительности оборудования
- •8.4 Расчет складов кусковых и сыпучих материалов
- •8.4.1 Расчет складов кусковых материалов
- •Значение клэффициента использования теоретического объема штабеля
- •Насыпная масса и угол естественного откоса материалов
- •8.4.2 Расчет и проектирование бункерных складов g
- •8.4.3 Расчет смесительных силосов сырьевой муки
- •8.4.4 Расчет силосных складов цемента
- •8.4.5 Расчет отделения приготовления и хранения сырьевого шлама
- •Плотность сырьевых материалов, используемых в цементном производстве
- •8.5. Выбор и расчет транспорта, питателей и дозаторов кусковых и порошкообразных материалов
- •8.5.1. Расчет ленточных конвейеров
- •8.5.2. Расчет пластинчатых конвейеров
- •8.5.3. Расчет ковшовых элеваторов
- •8.5.4. Расчет скребковых конвейеров
- •8.5.5. Расчет винтовых конвейеров
- •8.5.6. Расчет аэрожелобов
- •8.5.7. Питатели и дозаторы
- •8.6. Расчет и проектирование систем гидротранспорта сырья
- •8.7. Расчеты дробильного и помольного оборудования
- •8.7.1 Щековые дробилки
- •8.7.2 Конусные дробилки
- •8.7.3. Валковые дробилки
- •8.7.4 Молотковые дробилки
- •8.7.5 Шаровые мельницы
- •8.8. Расчеты сушильного оборудования 8.8.1 Расчет сушильных барабанов
- •8.8.2 Расчет сушилmy-размольных агрегатов
- •8.9 Расчет вращающихся печей мокрого способа производства цементного клинкера
- •8.9.1 Методика расчета
- •8.9.2 Пример теплового расчета установки пылеуглеприготовления для вращающейся печи 05,0x185 м
- •Характеристика углей
- •III. Определение температуры и количества сушильного агента на 1 кг угольной пыли перед мельничной установкой
- •IV. Определение часовых расходов топлива и воздуха и выхода отходящих газов
- •8.93 Пример теплового расчета вращающейся печи 0 5,0x185 м с колосниковым холодильником типа «Волга-75» при использовании в качестве технологического топлива природного газа
- •Приход тепла
- •8.10 Расчет вращающихся печей сухого способа производства
- •8.10.1 Методика расчета
- •8.10.2 Пример теплового расчета печной установки с циклонным теплообменником, декарбонизатором и холодильником клинкера
- •Показатели работы вращающихся печей с декарбонизаторами rsp
- •8.10.3. Пример теплового расчета печной установки с циклонными теплообменниками и декарбонизатором
- •8.11. Вентиляторы и дымососы
- •Техническая характеристика дымососов для оснащения вращающихся печей
- •8.12. Расчет систем пневмотранспорта
- •8.12.1. Классификация пневмотранспортных установок
- •Основные технические данные камерных пневмоподъемников
- •8.12.2. Транспортные трубопроводы, отводы (колена) и переключатели
- •8.12.3. Воздуходувные машины
- •8.12.4. Предварительный выбор типа установки и загрузочного устройства (питателя)
- •8.12.5. Расчет основных параметров установки
- •8.12.6. Окончательный выбор оборудования
- •8.13. Расчет систем аэрации и пневмоперемешивания
- •8.13.1. Системы аэрации силосов для хранения порошкообразных материалов
- •8.13.2 Системы пневмоперемешивания цементной сырьевой муки
- •9.1. Общие понятия об асу тп и атк
- •9.1.1. Основные определения
- •9.1.2. Типовые функции асу тп и режимы ее функционирования
- •9.1.3. Состав асу тп
- •9.2. Типовая функциональная структура асу тп
- •9.2.1. Централизованный контроль
- •9.2.2. Диагностика
- •9.2.3. Управление технологическим процессом в номинальном режиме
- •9.2.4. Ситуационное управление
- •9.2.5. Представление информации оператору
- •9.3. Комплекс технических средств асу тп
- •9.4. Средства вычислительной техники
- •9.4.1. Мини-эвм
- •9.4.2. Микропроцессоры и микро-эвм
- •9.4.3. Микропроцессорные контроллеры
- •9.4.4. Техническая структура асу тп
- •9.5. Асу основных технологических процессов цементного производства
- •9.6. Автоматизированные рабочие места (арм) персонала цементных заводов
- •9.7 Стадии проектирования и ввода в действие асутп
- •9.8. Интегрированное автоматизированное управление цементным производством
- •10. Вопросы экологии при проектировании цементных заводов
5.4.4. Ппп анализ
Выбор оптимального варианта технологической схемы должен основываться на сравнении прогнозируемых значений показателей, характеризующих качество функционирования проектируемого объекта. К таким показателям следует отнести: себестоимость выпускаемой продукции, возможность гарантированного выполнения производственных заданий по выпуску готовой продукции и, наконец, возможность гарантированного выпуска продукции заданного качества. Определение себестоимости выпускаемой продукции производится подсистемой расчета технико-экономических показателей. Получение же достоверных прогнозных оценок, характеризующих функциональные возможности проектируемого предприятия, основывается на его системотехническом анализе.
При системотехническом анализе используют два принципа моделирования процессов. Первый принцип основан на математической имитации процессов, происходящих в реальных объектах. Имея подобные реализации за длительные интервалы времени, можно достаточно надежно судить о свойствах системы в целом. Такой метод моделирования называется имитационным моделированием. В САПР-Цемент на основе имитационного моделирования прогнозируется производительность технологической линии.
При моделировании завод рассматривается как сложная система агрегатов, каждый из которых подвержен воздействию большого числа факторов.
Эти факторы могут быть предсказуемыми (технологический режим, плановые ремонты), а также случайными (выход из строя оборудования, переполнение емкости и т. д.). Каждое из этих событий изменяет состояние как отдельного агрегата, так и системы в целом.
Описание технологической схемы для имитационного процесса сводится к перечислению стандартных блоков, каждый из которых воспроизводит функционирование отдельного элемента схемы. Приведем описание основных блоков.
Блок ТА (технологический агрегат)
Производит имитацию включения и выключения технологического агрегата по следующим причинам: поступление команды из блока управления процессом, аварийное отключение, переход на плановый ремонт.
Блок РФ (буферная емкость) производит учет накопленного продукта и сообщает в блок управления о заполнении емкости на заданную величину.
Блок БУ1 (блок управления группой технологических агрегатов). В зависимости от требуемой производительности и фактического количества работоспособных агрегатов выдает команды на включение и выключение агрегатов.
Блок БУ2 (блок управления элементарной технологической цепочкой). В состав такой цепочки входят разгружаемая буферная емкость, группа технологических агрегатов, загружаемая буферная емкость. БУ2 определяет необходимую производительность технологических агрегатов из условия наличия свободных емкостей и передает команды на изменение производительности в БУ1. Кроме того БУ2 сообщает о наличии незадействованных ресурсов (резервных технологических агрегатов, свободных емкостей) в БУ2 других элементарных технологических цепочек с Целью задействования этих ресурсов.
Н
а
рис. 5.4 представлен типичный пример
моделируемого участка технологической
линии цементного завода. На карьере
работают три экскаватора (1, 2, 3). В
случае наличия свободной емкости в
бункере 4 известняк подается в бункер.
Если бункер заполнен, материал подается
в склад 10. Если в бункере 4 есть свободная
емкость, а число работоспособных
экскаваторов мало (1 или 0), то материал
в бункер поступает со склада 10 и с
карьера. Из бункера 4 известняк подается
в технологическую цепь, состоящую из
сырьевых мельниц 5, 6, печи 7 и цементных
мельниц 8, 9, разделенных промежуточными
емкостями 12, 13.
В результате имитационного моделирования работы схемы за достаточно большой срок (например, 20 000 часов) определяются такие показатели проектируемого завода как производительность и возможные отклонения ее от среднего значения, коэффициент использования оборудования, вероятность нахождения системы в различных технологических режимах, графики нагрузок на источники энергии.
Второй принцип анализа технологических схем основан на использовании передаточных функций отдельных объектов. Если при имитационном моделировании исследуется протекание процессов во времени, а затем получают интегральные оценки необходимых критериев, то в методе передаточных функций на основе теории динамических систем рассчитываются непосредственно изменения интегральных характеристик технологических потоков при прохождении их через агрегаты. Передаточная функция агрегата позволяет на основании характеристики потока на входе в агрегат и динамической модели агрегата определить соответствующие характеристики потока на выходе.
Метод передаточных функций в САПР-Цемент используется для оценки технологической схемы с точки зрения возможности стабилизации технологических режимов.
Проведение процессов в стабильных условиях является важнейшим фактором, влияющим на технико-экономические показатели работы предприятия. Так, например, несоответствие температуры обжига составу обжигаемой смеси, возникающее вследствие некомпенсированных колебаний состава, приводит к снижению активности клинкера, увеличению потерь тепла, ухудшению условий работы огнеупорной футеровки.
Источниками неоднородности сырьевой смеси являются: неоднородность полезного ископаемого на карьере, а также некоторые явления, возникающие в процессе технологической переработки (изменение режима работы оборудования, классификация материала по крупности при хранении в штабеле, погрешности устройств дозирования).
Как было сказано ранее, динамические характеристики свойств потоков определяются случайными процессами, каждому из которых соответствуют значения дисперсии D и параметра спада корреляционной функции Тсп. Передаточная функция агрегата позволяет по известному набору D8*, Ten. потока на входе в агрегат определить аналогичные характеристики для выходного потока. Динамические свойства исходных материалов определены в ППП СЫРЬЁ по данным геологической разведки. Проходя по всем агрегатам, составляющим технологическую цепочку, определяют неоднородность готового продукта, характеризуемую дисперсией 1).
При описании схемы приготовления сырьевой смеси используются математические модели процессов дозирования, смешивания, транспортировки и усреднения. При математическом описании процессов усреднения тонкодисперсного продукта в шлам-бассейнах и гомогенизационных силосах параметрами моделей являются длительность заполнения емкостей и коэффициенты, учитывающие неидеальность реальных смесительных систем. При моделировании процессов предварительного усреднения материалов в усреднительных складах наряду с длительностью заполнения штабелей учитывается число слоев материала, одновременно пересекаемых разгружающим механизмом.
Особенность математического описания сырьевых переделов состоит в необходимости учета эффектов совместного функционирования смесительно-усреднительного оборудования и АСУ ТП приготовления сырьевой смеси, осуществляющей текущую корректировку массовых расходов смешиваемых материалов. Основным параметром модели системы управления является эквивалентное запаздывание в контуре управления, включающее время прохождения материала от дозировочного блока до точки контроля химического состава смеси, время отбора и анализа пробы, а также время, необходимое для выработки корректирующих управляющих воздействий.
В качестве примера применения рассмотренной схемы расчетов можно привести многоальтернативный анализ схем автоматизированного технологического комплекса (АТК) сырьевого передела Невьянского цементного завода. По результатам данной работы, выполненной в тесном взаимодействии специалистов по технологии, проектированию и автоматизированному управлению технологическими процессами, было сделано следующее заключение.
1. Базовая технологическая схема, включающая в себя предварительное усреднение известняка, непрерывный анализ химического состава смеси и непрерывную гомогенизацию в усреднительной емкости объемом 1500 т, в реальных условиях неидеальной гомогенизации и недостаточно надежной работы усреднительных складов не обеспечит приготовление кондиционной сырьевой смеси.
2. Для обеспечения требуемого качества сырьевой смеси при минимальных затратах на ее производство необходимо усовершенствовать основной вариант АТК за счет следующих мероприятий:
исключения из проекта усреднительного склада известняка как весьма дорогостоящего и, как показали расчеты, относительно малоэффективного для Невьянского цементного завода агрегата;
организации весового дозирования всех четырех смешиваемых материалов известняка, глины, песка и огарков;
обеспечения высокой надежности системы непрерывного анализа химического состава путем дублирования всех необходимых устройств;
увеличения объема усреднительной емкости до величины 2200 т при использовании непрерывного анализатора и до величины 6600 т при использовании дискретного анализатора химического состава.
В настоящее время подобные автоматизированные расчеты проводятся на ранних стадиях проектирования АТК сырьевых переделов практически всех вновь строящихся или реконструируемых цементных заводов.
Выше были рассмотрены два принципиально разных подхода к автоматизированному анализу функционирования технологических схем и АТК. Первый из них основывается на имитационном моделировании технологических процессов. Цифровая модель процесса в ускоренном масштабе времени имитирует поведение динамической системы при длительном действии на нее случайных возмущений, обусловленных вариациями свойств сырья, погрешностями дозирования и т. д. Случайные возмущения моделируются специальной программой, использующей датчик случайных чисел, выход которого подключается к соответствующим имитационным моделям взаимосвязанных технологических звеньев. Поведение всех интересующих проектировщика переменных фиксируется в виде графиков, которые с помощью ЭВМ выводятся на экран дисплея и печатающее устройство. Статистическая обработка полученных зависимостей, которую также производит вычислительная машина, позволяет определить средние значения и дисперсии выходных и промежуточных переменных.
Второй метод базируется на аналитических соотношениях теории многомерных динамических систем. Для его реализации разрабатывается библиотека программ, осуществляющих расчет оптимального статического режима моделируемого процесса, линеаризацию нелинейной в общем случае динамической системы в окрестностях оптимального режима и анализ полученной линеаризованной системы методами теории линейных систем, подверженных действию случайных возмущений.
Практика расчетов показала, что каждый из двух подходов имеет определенные достоинства и недостатки. Аналитические расчеты требуют существенно меньших затрат времени работы ЭВМ и потому незаменимы при сравнительном анализе большого числа вариантов. В то же время они дают более грубые оценки, т. к. основываются на линейном приближении уравнений технологических процессов.
Имитационное моделирование сопряжено с существенно большими затратами машинного времени, но позволяет получить более точные и наглядные оценки интересующих проектировщика показателей. По-видимому, наиболее рациональна комбинированная методика. На первом этапе расчетов, когда сравниваются многочисленные альтернативные варианты технологических схем, оборудования и структур автоматизации, используются приближенные аналитические оценки. На втором этапе расчетов для одного или нескольких отобранных вариантов проводится более детальное исследование на имитационной модели.