
- •Соотношение объемов продукции, отгруженной цементными заводами России за 1990-1991 г.Г.
- •2. Проектирование в системе подготовки инженера по химической технологии вяжущих материалов
- •2.1. Общие положения
- •2.2. Курсовой проект
- •2.2.1. Состав и содержание курсового проекта
- •2.2.2. Оформление и защита курсового проекта
- •2.3.Дипломное проектирование
- •2.4. Основные требования к оформлению чертежей
- •Этапы проектирования цементных заводов
- •3.1. Схема развития и размещения отрасли
- •3.2. Технико-экономическое обоснование строительства (тэо). Технико-экономические расчеты (тэр)
- •3.3. Проект и рабочий проект. Основные разделы
- •4.1. Заводы, работающие по мокрому способу производства
- •4.2 Заводы, работающие по сухому способу производства
- •4.3 Перспективные цементные заводы
- •5.1 Цели системы автоматизированного проектирования (сапр)
- •5.2. Состав сапр
- •5.3. Функционирование сапр
- •5.4. Основные пакеты прикладных программ (ппп) технологической подсистемы сапр-цемент
- •5.4.1. Ппп сырьё
- •5.4.2. Ппп баланс
- •5.4.3. Ппп выбор
- •5.4.4. Ппп анализ
- •5.4.5. Ппп транспорт
- •5.4.6. Ппп задание
- •Современные технологические решения основных переделов цементного производства
- •6.1. Сырьевые материалы для производства портландцементного клинкера и цемента
- •6.2. Технология добычи сырья
- •6.2.1 Исходные материалы для проектирования карьеров цементного сырья
- •6.2.2 Добыча и транспортирование сырья
- •6.3. Дробление и помол сырьевых материалов
- •6.3.1. Примеры технологических схем дробления
- •6.3.2. Помол сырьевых материалов
- •6.4. Системное проектирование технологических схем приготовления сырьевой смеси
- •6.4.1. Технология приготовления сырьевой смеси заданного состава
- •6.5. Обжиг портландцементных сырьевых смесей
- •6.6 Подготовка технологического топлива к сжиганию
- •6.6.1. Твердое топливо
- •6.6.2. Газообразное топливо
- •6.6.3. Жидкое топливо
- •6.7 Помол цементной шихты
- •6.8. Хранение, отгрузка и упаковка цемента
- •6.9. Технологический контроль
- •Оборудование цементных заводов
- •7.1. Дробильное оборудование
- •Технические характеристики отечественных щековых дробилок
- •Технические характеристики конусных дробилок крупного дробления
- •Технические характеристики двухроторных дробилок фирмы «Бюлер-Миаг»
- •Технические характеристики сда
- •Технические характеристики дробилок типа peg
- •Технические характеристики дробилок типа «Хардопакт»
- •Технические характеристики сушильных барабанов
- •7.2. Оборудование для сушки сырьевых материалов
- •7.3. Оборудование для помола сырья
- •Технические характеристики вихревых и с русловым кипящим слоем и дробилок-сушилок
- •Технические характеристики сушилок-дробилок фирмы «Хацемаг» (Германия)
- •Технические характеристики мельниц мокрого помола сырьевых материалов
- •Роликовые (валковые) мельницы
- •Зависимость производительности мельниц «Гидрофол» от вида измельчаемой породы
- •Технические характеристики мельниц самоизмельчения «Гидрофол»
- •Технические характеристики мельниц самоизмельчения «Аэрофол»
- •Производительность и мощность привода мельниц Лёше
- •Технические характеристики тарельчато-роликовых мельниц внииЦеммаш
- •Производительность мельниц Петерса, т/ч
- •7.4. Печные агрегаты
- •7.4.1. Вращающиеся печи мокрого способа производства
- •7.4.2. Вращающиеся печи сухого способа производства
- •Технические характеристики печных агрегатов мокрого способа производства
- •Технические характеристики печных агрегатов сухого способа производства
- •7.4.3. Печные агрегаты комбинированного способа производства /
- •7.4.4. Проектирование цехов обжига
- •7.5. Оборудование для помола цементной шихты
- •7.5.1. Цементные мельницы
- •Перечень цементных мельниц, эксплуатируемых в цементной промышленности
- •7.5.2. Сепараторы
- •Технические характеристики цементных мельниц
- •Техническая характеристика центробежных сепараторов с выносными циклонами
- •7.6. Приемные устройства и склады
- •7. 6.1. Типы складов и приемных устройств
- •7.6.2. Проектные решения складов
- •7.7. Оборудование для аспирации и обеспыливания технологических процессов
- •Характеристика способов борьбы с пылевыделением методом гидроподавления
- •Типы пылеуловителей и область их применения
- •Эффективность очистки газа от пыли в циклонах
- •Средняя производительность циклонных элементов
- •Характеристика пылеулавливающего оборудования
- •8.1. Расчет портландцементной сырьевой смеси
- •8.2. Материальный баланс
- •8.2.1. Расчет мощности завода по клинкеру и цементу
- •Производительность и коэффициент использования вращающихся печей*
- •8.2.2 Определение удельного расхода сырьевых материалов, топлива и вспомогательных материалов
- •8.2.3 Режим работы производственных отделений и годовой фонд рабочего времени
- •8.2.4 Основные условия расчета материального баланса завода
- •8.2.5 Примеры расчета некоторых статей материального баланса
- •1596144 Влажного.
- •Материальный баланс завода
- •8.2.6 Определение количества и производительности основного технологического оборудования
- •Коэффициент использования технологического оборудования
- •8.3 Поверочные расчеты производительности оборудования
- •8.4 Расчет складов кусковых и сыпучих материалов
- •8.4.1 Расчет складов кусковых материалов
- •Значение клэффициента использования теоретического объема штабеля
- •Насыпная масса и угол естественного откоса материалов
- •8.4.2 Расчет и проектирование бункерных складов g
- •8.4.3 Расчет смесительных силосов сырьевой муки
- •8.4.4 Расчет силосных складов цемента
- •8.4.5 Расчет отделения приготовления и хранения сырьевого шлама
- •Плотность сырьевых материалов, используемых в цементном производстве
- •8.5. Выбор и расчет транспорта, питателей и дозаторов кусковых и порошкообразных материалов
- •8.5.1. Расчет ленточных конвейеров
- •8.5.2. Расчет пластинчатых конвейеров
- •8.5.3. Расчет ковшовых элеваторов
- •8.5.4. Расчет скребковых конвейеров
- •8.5.5. Расчет винтовых конвейеров
- •8.5.6. Расчет аэрожелобов
- •8.5.7. Питатели и дозаторы
- •8.6. Расчет и проектирование систем гидротранспорта сырья
- •8.7. Расчеты дробильного и помольного оборудования
- •8.7.1 Щековые дробилки
- •8.7.2 Конусные дробилки
- •8.7.3. Валковые дробилки
- •8.7.4 Молотковые дробилки
- •8.7.5 Шаровые мельницы
- •8.8. Расчеты сушильного оборудования 8.8.1 Расчет сушильных барабанов
- •8.8.2 Расчет сушилmy-размольных агрегатов
- •8.9 Расчет вращающихся печей мокрого способа производства цементного клинкера
- •8.9.1 Методика расчета
- •8.9.2 Пример теплового расчета установки пылеуглеприготовления для вращающейся печи 05,0x185 м
- •Характеристика углей
- •III. Определение температуры и количества сушильного агента на 1 кг угольной пыли перед мельничной установкой
- •IV. Определение часовых расходов топлива и воздуха и выхода отходящих газов
- •8.93 Пример теплового расчета вращающейся печи 0 5,0x185 м с колосниковым холодильником типа «Волга-75» при использовании в качестве технологического топлива природного газа
- •Приход тепла
- •8.10 Расчет вращающихся печей сухого способа производства
- •8.10.1 Методика расчета
- •8.10.2 Пример теплового расчета печной установки с циклонным теплообменником, декарбонизатором и холодильником клинкера
- •Показатели работы вращающихся печей с декарбонизаторами rsp
- •8.10.3. Пример теплового расчета печной установки с циклонными теплообменниками и декарбонизатором
- •8.11. Вентиляторы и дымососы
- •Техническая характеристика дымососов для оснащения вращающихся печей
- •8.12. Расчет систем пневмотранспорта
- •8.12.1. Классификация пневмотранспортных установок
- •Основные технические данные камерных пневмоподъемников
- •8.12.2. Транспортные трубопроводы, отводы (колена) и переключатели
- •8.12.3. Воздуходувные машины
- •8.12.4. Предварительный выбор типа установки и загрузочного устройства (питателя)
- •8.12.5. Расчет основных параметров установки
- •8.12.6. Окончательный выбор оборудования
- •8.13. Расчет систем аэрации и пневмоперемешивания
- •8.13.1. Системы аэрации силосов для хранения порошкообразных материалов
- •8.13.2 Системы пневмоперемешивания цементной сырьевой муки
- •9.1. Общие понятия об асу тп и атк
- •9.1.1. Основные определения
- •9.1.2. Типовые функции асу тп и режимы ее функционирования
- •9.1.3. Состав асу тп
- •9.2. Типовая функциональная структура асу тп
- •9.2.1. Централизованный контроль
- •9.2.2. Диагностика
- •9.2.3. Управление технологическим процессом в номинальном режиме
- •9.2.4. Ситуационное управление
- •9.2.5. Представление информации оператору
- •9.3. Комплекс технических средств асу тп
- •9.4. Средства вычислительной техники
- •9.4.1. Мини-эвм
- •9.4.2. Микропроцессоры и микро-эвм
- •9.4.3. Микропроцессорные контроллеры
- •9.4.4. Техническая структура асу тп
- •9.5. Асу основных технологических процессов цементного производства
- •9.6. Автоматизированные рабочие места (арм) персонала цементных заводов
- •9.7 Стадии проектирования и ввода в действие асутп
- •9.8. Интегрированное автоматизированное управление цементным производством
- •10. Вопросы экологии при проектировании цементных заводов
5.1 Цели системы автоматизированного проектирования (сапр)
Широкое внедрение автоматизации в процесс проектирования связано не только с прогрессом непосредственно вычислительной техники, хотя этот прогресс, действительно, впечатляет и намного превосходит темпы повышения количественных и качественных показателей в остальных фундаментальных отраслях человеческой деятельности. Так, за 20 лет быстродействие и объем оперативной памяти серийных ЭВМ увеличились в 1000 раз при одновременном уменьшении габаритов устройств и повышении уровня их надежности. Принципиально изменяется и организация использования вычислительной техники в сторону все большего приближения к обмену между человеком и машиной с помощью естественных языков и графических изображений, что расширяет возможности использования ЭВМ в различных сферах интеллектуальной деятельности.
И тем не менее, главные причины все большего внедрения автоматизации в проектирование связаны с изменением требований, предъявляемых к качеству проектирования. Рассмотрим эти причины.
Постоянно возрастающая интенсификация производства предполагает получение максимального эффекта от вводимых в сферу производства ресурсов. С точки зрения проектирования это связано, во-первых, с получением точных прогнозов показателей функционирования различных вариантов проектируемых объектов с учетом всего множества влияющих факторов и с поиском варианта, обеспечивающего экстремальные значения выбранных критериев. Во-вторых, рациональное использование ресурсов невозможно без их детального учета на всех этапах производства, что приводит к необходимости для реализации проектов разрабатывать детальные спецификации оборудования, изделий и материалов.
Оптимизация проектных решений с использованием многофакторных моделей, а также хранение и оперативная передача данных о десятках тысяч позиций, поставляемых на строящиеся объекты, невозможны без использования современных вычислительных устройств.
Важным фактором, влияющим на эффективность современного производства, является возможность быстрого внедрения в промышленность научных разработок и наиболее прогрессивных агрегатов. При ручном проектировании время передачи достижений прикладной науки в производство затягивалось из-за необходимости изменения установившихся проектных стереотипов и корректирования сложного нормативно-справочного хозяйства.
Механизм внедрения при ручном проектировании действует следующим образом. Как правило, через 5—10 лет издаются методики по проектированию заводов определенного технологического профиля (например, цементных заводов) и каталоги выпускаемого машиностроителями оборудования. По мере появления новых разработок появляются всевозможные дополнения, уточнения, временные указания и так далее. Разобраться в этом потоке слабо организованной информации исключительно сложно, что резко снижает гибкость проектирования.
При использовании САПР все идеи, показавшие свою эффективность, непосредственно вводятся в сферу проектной деятельности в виде изменения алгоритмов автоматизированных проектных процедур и необходимых корректировок базы данных оборудования. При этом не нарушается структурная целостность всей системы, а последние достижения в соответствующей отрасли автоматически заменяют устаревшие концепции. Попутно заметим, что возможность гибкого и непрерывного изменения алгоритмического и информационного обеспечения САПР является важнейшим показателем ее качества.
Необходимость автоматизации проектирования обусловливается также социальными факторами. Наличие при ручном проектировании большого числа рутинных, малоквалифицированных и утомительных операций приводит к снижению престижности профессии проектировщика и созданию острого кадрового дефицита. К «тяжелым» операциям следует отнести заполнение ведомостей, спецификаций, смет, выполнение расчетов по заданным методикам, вычерчивание детализирующих схем и чертежей.
Наряду с перечисленными факторами, обусловливающими развитие САПР, можно назвать также следующие, очевидность которых не требует подробного разъяснения:
- повышение производительности труда проектировщиков;
- повышение уровня унификации проектных решений;
- снижение количества проектных ошибок;
- изменение эстетики как самого процесса проектирования, так и проектных документов, что несомненно влияет на ход последующего строительства.
Прежде чем перейти к рассмотрению состава и функционирования САПР, остановимся на принципах создания автоматизированных систем проектирования. Знание этих принципов специалистами-технологами необходимо потому, что только высококвалифицированные технологи, вооруженные в требуемом объеме знаниями принципов автоматизации проектирования, а не математики и программисты должны быть ведущей силой при создании системы.
В качестве главного принципа создания САПР следует назвать принцип комплексного охвата решаемых системой проектных задач. Опыт применения вычислительной техники показал, что, автоматизируя отдельные проектные процедуры, можно лишь несущественно (до 10 %) охватить общий объем проектных работ. В основном это составление смет, выполнение сложных строительных и незначительного числа технологических расчетов, например, расчет сырьевых цементных смесей. Невозможность более широкого внедрения автоматизации отдельных проектных задач объясняется тем, что каждая отдельная задача встречается достаточно редко, вследствие чего разработка и поддержание работоспособности каждой автоматизированной процедуры в виде отдельной системы с большим количеством вспомогательных ресурсов становятся нерентабельными. Только в том случае, когда все задачи объединены в единую систему с непрерывной передачей информации от одной проектной процедуры к другой, с едиными обслуживающими подсистемами, автоматизированное проектирование сможет решить возложенные на него задачи.
Приведем пример различного подхода к автоматизации отдельной проектной процедуры, а именно, выбора дробильного оборудования. Вначале рассмотрим вариант создания независимой программы.
В цементной промышленности применяются следующие типы дробилок: щековые, роторные, валковые, молотковые, конусные; методики их расчета существенно различны. Следовательно, необходимо разрабатывать ряд программ по расчету производительности дробилок, каждая из которых требует своей инструкции ввода исходных данных. Причем количество этих данных достаточно велико: здесь и характеристика перерабатываемых материалов, и конструктивные параметры оборудования, и экономические показатели (стоимость оборудования, электроэнергии, эксплуатационных затрат). Результатом работы программы являются данные о производительности оборудования и потребных ресурсах, на основании которых проектировщик принимает решение. При этом точность произведенных расчетов значительно теряет свою ценность, поскольку данные о технологических свойствах сырья были получены на основании приблизительных оценок, также приближенно известны возможные колебания свойств сырья и необходимой производительности оборудования. Все это заставляет проектировщика вводить внушительный запас по производительности оборудования на неучтенные обстоятельства, что естественно снижает коэффициент полезного действия этой программы, и, как правило, с такими программами успешно конкурируют прикидочные расчеты или номограммы, а то и просто опыт и интуиция проектировщика.
В том случае, если приведенная выше расчетная процедура реализована в рамках САПР, ее разработка и использование производятся по принципиально другой схеме. Во-первых, обязательным элементом САПР является база данных (БД) оборудования и перерабатываемых материалов. Таким образом, ввод исходных данных для решения конкретной задачи сокращается, поскольку необходимая информация выбирается из соответствующего раздела базы данных. Во-вторых, решению задачи выбора оборудования предшествовала статистическая обработка полной информации о перерабатываемом сырье, в результате чего имеются точные данные как о средних значениях характеристик сырья, так и об их колебаниях, что позволяет значительно снизить коэффициент на «непредвиденные обстоятельства». И, наконец, информация о выбранном оборудовании заносится в базу данных проектируемого объекта, что позволит на дальнейших стадиях проектирования без дополнительного ввода решать такие задачи, как системный анализ всей технологической схемы, выбор вспомогательного и транспортного оборудования, составление заданий на проектирование смежных частей проекта и выпуск заказных спецификаций. Как видим, в рамках САПР та же задача становится важным и эффективным элементом автоматизации процесса проектирования.
Вторым по важности принципом создания САПР является обеспечение гибкости системы. Здесь следует обратить внимание как на возможность безболезненного и достаточно оперативного изменения информационного и алгоритмического обеспечения в соответствии с последними достижениями технологической науки и технических средств, так и на возможность влияния проектировщика на процесс проектирования. Как было показано, САПР предполагает и непрерывность процесса автоматизированного проектирования. Однако зачастую возникают ситуации, когда проектировщику надо принимать решения, не предусмотренные системой; в этом случае должны быть предоставлены средства ввода полученных проектировщиком решений, с тем чтобы не нарушалось дальнейшее автоматизированное проектирование.
И, наконец, третий принцип — принцип поэтапного проектирования. Система должна обеспечивать возможность разработки проектов с различным уровнем детализации. Этот принцип позволяет выбирать оптимальные решения на всех стадиях проектирования: выбор места строительства, разработку технологической схемы и выбор основного оборудования с целью определения технико-экономических показателей, и, наконец, полную разработку проекта с выпуском рабочих проектных документов.