
- •Методы оптимальных решений
- •Содержание
- •Введение
- •1. Моделирование – метод научного познания
- •1.1 Основные понятия моделирования
- •Вопросы *
- •1.2 Системный подход и моделирование социально-экономических систем
- •Вопросы
- •5. Численное решение
- •6. Анализ численных результатов и их применение
- •Приемы экономико-математического моделирования
- •Классификация моделей по типу информации:
- •Классификация моделей по учету фактора времени:
- •Классификация моделей по учету фактора неопределенности:
- •Классификация моделей по типу подхода к изучаемым социально-экономическим системам:
- •Вопросы
- •2.2 Принцип оптимальности в планировании и управлении
- •Вопросы
- •Математическая формулировка общей задачи линейного программирования
- •Структурная форма записи задачи линейного программирования
- •Вопросы
- •3.2 Формы записи задачи линейного программирования
- •Нормы затрат и выхода продукции
- •Решение
- •Общая форма записи задачи линейного программирования
- •Каноническая форма записи задачи линейного программирования
- •Стандартная форма записи задачи линейного программирования
- •4.2. Алгоритм графического метода
- •Нормы затрат и выхода продукции
- •Решение
- •1. Составление экономико-математической модели задачи
- •2. Построение граничных прямых, соответствующих системе ограничений
- •3. Определение области допустимых решений
- •4. Построение вектора градиента и линии уровня
- •5. Нахождение точки экстремума
- •6. Определение значения целевой функции
- •4.3. Варианты графического решения задач линейного программирования
- •Вопросы
- •Рекомендуемые источники к главе 4
- •5. Симплексный метод решения задач линейного программирования
- •5.1. Сущность симплексного метода
- •Вопросы
- •5.2. Алгоритм решения задач симплексным методом с естественным базисом
- •Показатели эффективности возделывания 1 га культур
- •Решение
- •1. Составление экономико-математической модели задачи
- •2. Приведение модели к канонической форме записи задачи, определение основных и дополнительных переменных
- •3. Составление базиса
- •4. Построение первой симплексной таблицы
- •Первая симплексная таблица (сокращенная)
- •Первая симплексная таблица (полная)
- •5. Проверка оптимальности решения
- •6. Построение второй симплексной таблицы
- •Первая симплексная таблица с разрешающим элементом
- •Вторая симплексная таблица
- •Правила нахождения коэффициентов второй симплексной таблицы
- •Вторая симплексная таблица
- •7. Построение третьей и последующих симплексных таблиц
- •Вторая симплексная таблица с разрешающим элементом
- •Третья симплексная таблица
- •Вопросы
- •5.3. Алгоритм решения задач симплексным методом с искусственным базисом
- •Решение
- •1. Составление экономико-математической модели задачи
- •2. Приведение модели к канонической форме записи задачи, определение основных и дополнительных переменных
- •3. Составление базиса, введение искусственных переменных
- •4. Построение первой симплексной таблицы
- •Первая сокращенная симплексная таблица с м-строкой
- •5. Решение вспомогательной задачи симплексным методом с естественным базисом
- •Данные о содержании питательных веществ и стоимости культур
- •Решение
- •1. Составление экономико-математической модели задачи
- •2. Приведение модели к канонической форме записи задачи, определение основных и дополнительных переменных
- •3. Составление базиса, введение искусственных переменных
- •4. Построение первой симплексной таблицы
- •Первая симплексная таблица
- •5. Проверка оптимальности решения
- •6. Построение второй симплексной таблицы
- •Первая симплексная таблица с разрешающим элементом
- •Вторая симплексная таблица
- •7. Построение третьей и последующих симплексных таблиц
- •Третья симплексная таблица
- •Вопросы
- •5.4. Алгоритм решения задач симплексным методом в Microsoft Excel 2010
- •Показатели эффективности возделывания 1 га культур
- •Решение
- •1. Составление экономико-математической модели задачи
- •2. Составление формы для ввода данных в Microsoft Excel
- •3. Ввод исходных данных в форму Microsoft Excel
- •4. Ввод формул для вычислений значений целевой функции и левой части неравенств
- •5. Настройка программы Microsoft Excel 2010
- •6. Установка значений в окне Параметры поиска решений
- •7. Анализ полученного решения
- •6.2. Постановка и математическая формулировка транспортной задачи
- •Постановка задачи
- •Матрица транспортной задачи
- •6.3. Алгоритм решения транспортной задачи (метод северо-западного угла)
- •Стоимости перевозок одной тонны картофеля (ден. Ед.)
- •Решение
- •1. Проверка типа задачи (открытая или закрытая)
- •2. Составление экономико-математической модели задачи
- •Матрица транспортной задачи (ден. Ед.)
- •3. Составление опорного плана
- •Опорный план транспортной задачи (ден. Ед.)
- •4. Проверка решения на оптимальность
- •Опорный план транспортной задачи (ден. Ед.)
- •5. Построение контура
- •Правила построения контура
- •Опорный план транспортной задачи с контуром (ден. Ед.)
- •6. Построение нового опорного плана
- •7. Проверка нового плана на оптимальность
- •Вопросы
- •6.4. Алгоритм решения транспортной задачи в Microsoft Excel 2010
- •Себестоимость перевозки 1 т сена, руб.
- •Решение
- •1. Проверка типа задачи (открытая или закрытая)
- •2. Составление экономико-математической модели задачи
- •6. Анализ полученного решения
- •Вопросы
- •6.5. Задача о назначениях
- •Общий вид транспортной матрицы задачи о назначениях
- •Экономико-математическая модель задачи о назначениях
- •Структурная форма записи задачи о назначениях
- •Вопросы и задания для самопроверки и самоподготовки
- •6.6. Алгоритм решения задачи о назначениях с помощью Microsoft Excel 2010
- •Производительность работников
- •Решение
- •1. Составление экономико-математической модели задачи
- •7.2 Прямая и двойственная задача
- •Построение двойственной задачи
- •Исходные данные задачи
- •Решение
- •1. Составление экономико-математической модели задачи
- •2. Приведение модели к канонической форме записи задачи, определение основных и дополнительных переменных
- •3. Решение задачи симплексным методом
- •Последняя симплексная таблица (оптимальное решение)
- •4. Анализ двойственных оценок
- •Симплексная таблица с коэффициентами замещения и двойственными оценками
- •Вопросы
- •7.3 Основные свойства двойственных оценок
- •Вопросы
- •7.4 Алгоритм решения двойственной задачи в Microsoft Excel 2010
- •Решение
- •1. Составление экономико-математической модели задачи
- •2. Решение задачи симплексным методом
- •3. Анализ оптимального решения
- •4. Мера влияния ограничения на целевую функцию
- •5. Свойство оптимальности решения
- •Вопросы
- •Рекомендуемые источники к главе 7
- •Библиографический список
- •Приложение 1 Полезные ссылки
Классификация моделей по учету фактора неопределенности:
детерминированные, в которых результаты однозначно определяются управляющими воздействиями;
стохастические (вероятностные), если при задании на входе модели определенной совокупности значений на ее выходе могут получаться различные результаты в зависимости от действия случайного фактора.
Классификация моделей по типу математического аппарата: матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели, модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д.;
Классификация моделей по типу подхода к изучаемым социально-экономическим системам:
дескриптивные (описательные) модели предназначены для описания и объяснения фактически наблюдаемых явлений или для прогноза этих явлений;
нормативные модели рассматривают как должна быть устроена и как должна действовать экономическая система в определенных критериях.
Пример. Рассмотрим в качестве примера экономико-математическую модель межотраслевого баланса. С учетом приведенных выше классификационных рубрик это прикладная, макроэкономическая, аналитическая, дескриптивная детерминированная, балансовая, матричная модель, при этом существуют как статические, так и динамические экономико-математические модели межотраслевого баланса.
Вопросы
Каковы основные классификационные признаки экономико-математических моделей?
Приведите примеры моделей в каждой из классификаций.
Рекомендуемые источники к главе 1
3, 6, 8, 13, 15, 22
2. Основы методов оптимального (математического) программирования
2.1 Понятие экономико-математических методов
В экономико-математических исследованиях, в исследованиях социально-экономических систем широко применяются методы математической статистики и теории вероятности, в значительной мере используется аппарат математического моделирования экономических процессов, сетевого планирования, теории игр и другие.
Такому комплексу экономических и математических научных дисциплин, объединенных для изучения экономики, академиком В.С. Немчиновым в начале 60-х годов ХХ в. дано обобщающее название – экономико-математические методы (ЭММ).
Экономико-математические методы – это комплекс научных дисциплин, предметом изучения которых являются количественные характеристики и закономерности экономических процессов и явлений, рассматриваемых в неразрывной связи с их качественными характеристиками.
Экономико-математические методы – это методы разработки, исследования и принятия решений по экономико-математическим моделям.
Экономико-математическое моделирование – это формализованное представление закономерностей поведения реальных экономических систем в виде абстрактных математических аналогов (систем уравнений и неравенств).
Математическое моделирование экономических ситуаций на базе современной вычислительной техники позволяет автоматизировать сбор и обработку первичной информации, выделить основные параметры, влияющие на деятельность фирмы, рассчитать различные варианты деятельности (проектирования) фирмы, определить наиболее целесообразные мероприятия, обеспечивающие необходимую эффективность производства или предпринимательства, и на основе этих данных принять решение о выборе оптимальной стратегии по управлению деятельностью фирмы (формы бизнеса).
В настоящее время в процессе принятия решений опираются на широкий круг экономико-математических методов. Решения, затрагивающие управление деятельностью предприятия, выбор наилучшего варианта развития, распределение ресурсов и изучение рыночной конъюнктуры, – прогнозирование, которое осуществляется с помощью предварительного моделирования процессов и его частей. Большое значение экономико-математические методы и моделирование приобретают в связи с появлением дефицита ресурсов, когда решается задача их оптимального распределения.
Экономико-математические методы следует понимать как инструмент, а экономико-математические модели – как продукт процесса экономико-математического моделирования. Экономико-математических методов множество [13].
Методами оптимальных решений являются методы, в которых используется критерий оптимальности (количественный показатель, заданный функцией, экстремальное значение которой необходимо найти).
К методам принятия оптимальных решений, включая исследование операций, относятся: оптимальное (математическое) программирование; блочное программирование; дробно-линейное программирование; параметрическое программирование; сепарабельное программирование; методы ветвей и границ; сетевые методы планирования и управления; программно-целевые методы планирования и управления; теория и методы управления запасами; теория массового обслуживания; теория игр; теория решений; теория расписаний.
Оптимальное (математическое) программирование включает: линейное программирование; нелинейное программирование; динамическое программирование; дискретное (целочисленное) программирование; стохастическое программирование; геометрическое программирование.