
- •В .И. Варгунин, о.В. Москвичев
- •Оглавление
- •Часть I. Информационные технологии. Основные понятия
- •Глава 1. Основные понятия и определения
- •§ 1. Информационные системы
- •§ 2. Классификация информационных систем
- •§ 3. Структура информационного процесса
- •§ 4. Характеристики и показатели информационных процессов
- •§ 5. Базы данных
- •§ 6. Программное обеспечение
- •Контрольные вопросы
- •Глава 2. Современные мейнфреймы компании iвм
- •§ 7. Особенности мейнфреймов
- •§ 8. Архитектура ibm s/390
- •§ 9. Универсальность ibm s/390
- •§ 10. Новый шаг в развитии мейнфреймов
- •§ 11. Обеспечение отказоустойчивости
- •§ 12. Операционные системы для мейнфреймов ibm
- •Контрольные вопросы
- •Глава 3. Информационные потоки в транспортных системах
- •§ 13. Сеть передачи данных (спд)
- •§ 14. Требования к спд
- •§ 15. Реализация спд
- •Контрольные вопросы
- •Глава 4 Оптоволоконные линии связи
- •§ 16. Особенности оптических систем связи
- •§ 17. Конструкция оптического волокна
- •§ 18. Источники и приемники излучения
- •§ 19. Волоконно – оптический кабель
- •§ 20. Оптические соединители
- •§ 21. Перспективы развития волс
- •Контрольные вопросы
- •Глава 5. Связь и ее роль в организации транспортного обслуживания
- •§ 22. Связь как основа систем управления на транспорте
- •§ 23. Виды транспортной связи и ее назначение
- •§ 24. Современная цифровая технологическая связь российских железных дорог
- •Контрольные вопросы
- •Часть II. Структура и уровни построения асу
- •Глава 6. Понятие об автоматизированной системе управления железнодорожным транспортом
- •§ 25. Основные принципы организации асужт
- •§ 26. Комплекс управления перевозочным процессом
- •§ 27. Управление экономикой, финансами и маркетингом
- •§ 28. Комплекс управления инфраструктурой
- •Контрольные вопросы
- •Глава 7. Системы управления грузовыми перевозками
- •§ 29. Автоматизированная система оперативного управления перевозками (асоуп)
- •§ 30. Сетевая интегрированная российская информационно – управляющая система (сириус)
- •§ 31. Система автоматической идентификации подвижного состава (саи)
- •§ 32. Автоматизированная система управления внешнеторговыми перевозками (асу «грузовой экспресс»)
- •Контрольные вопросы
- •Глава 8. Системы диспетчерского управления перевозками
- •§ 33. Автоматизированная система ведения и анализа графика исполненного движения – гид «Урал – вниижт»
- •§ 34. Центры управления местной работой (асу цумр)
- •Раздел 1;
- •§ 35. Оскар и оскар-м
- •Контрольные вопросы
- •Глава 9. Управление пассажирскими перевозками
- •§ 36. Программы информатизации управления пассажирскими перевозками
- •§ 37. Общая характеристика системы «Управления пассажирскими перевозками»
- •§ 38. Подсистемы асу «Экспресс – 3»
- •§ 39. Информационное и технологическое обеспечение системы «Управления пассажирскими перевозками»
- •Контрольные вопросы
- •Глава 10. Управление материальными ресурсами и финансами на железнодорожном транспорте
- •§ 40. Единая корпоративная автоматизированная система управления финансами и ресурсами оао «ржд» (екасуфр)
- •§ 41. Информационно – аналитическая система корпоративного управления и прогнозирования (иаскуп)
- •§ 42. Автоматизированная система «Централизованной подготовки и оформления перевозочных документов» (ас этран)
- •Контрольные вопросы
- •Глава 11. Управление инфраструктурой локомотивного хозяйства
- •§ 43. Общая характеристика и цель создания системы асутр
- •§ 44. Функции системы асутр и ее подсистемы
- •§ 45. Средства и технические требования к системе асутр
- •Контрольные вопросы
- •Глава 12. Перспективные технологии слежения и управления железнодорожным подвижным составом
- •§ 46. Современное состояние
- •§ 47. Основные элементы спутниковых систем навигации
- •§ 48. Принцип работы систем спутниковой навигации
- •§ 49. Применение спутниковой навигации на железнодорожном транспорте
- •Контрольные вопросы
- •Глава 13. Взаимодействие различных видов транспорта
- •§ 50. Смешанные технологии грузоперевозок
- •§ 51. Информационно-логистические центры транспортных узлов
- •§ 52. Информационные технологии мультимодальных перевозок
- •§ 53. Основные принципы построения общего информационного пространства транспортного комплекса
- •§ 54. Пассажирская транспортная сеть
- •Контрольные вопросы
§ 18. Источники и приемники излучения
В качестве источников излучения используются светодиоды и полупроводниковые лазеры. Светодиоды (LED – Light Emitted Diode) являются некогерентными источниками, генерирующими излучение в некоторой непрерывной области спектра шириной 30-50 нм. Из-за значительной ширины диаграммы направленности их применяют только при работе с многомодовым волокном. Самые дешевые излучатели работают в диапазоне волн 850 нм (с них началась волоконная связь). Передача на более длинных волнах эффективнее, но технология изготовления излучателей на 1300 нм сложнее и они дороже.
Лазеры являются когерентными источниками, обладающими узкой спектральной шириной излучения (1-3 нм, в идеале – монохромные). Лазер дает узконаправленный луч, необходимый для одномодового волокна. Длина волны – 1300 или 1550 нм, осваиваются и более длинноволновые диапазоны. Быстродействие выше, чем у светодиодов. Лазер менее долговечен, чем светодиод, и более сложен в управлении. Мощность излучения сильно зависит от температуры, поэтому приходится применять обратную связь для регулировки тока. Лазерный источник чувствителен к обратным отражениям: отраженный луч, попадая в оптическую резонансную систему лазера, в зависимости от сдвига фаз может вызвать как ослабление, так и усиление выходного сигнала. Нестабильность уровня сигнала может приводить к неработоспособности соединения, поэтому требования к величине обратных отражений в линии для лазерных источников гораздо жестче. Лазерные источники применяются и для работы с многомодовым волокном (например, в технологии Gigabit Ethernet 1000Base-LX).
Детекторами излучения служат фотодиоды. Существует ряд типов фотодиодов, различающихся по чувствительности и быстродействию. Простейшие фотодиоды имеют низкую чувствительность и большое время отклика. Большим быстродействием обладают диоды, у которых время отклика измеряется единицами наносекунд при приложенном напряжении от единиц до десятков вольт. Лавинные диоды обладают максимальной чувствительностью, но требуют приложения напряжения в сотни вольт, и их характеристики сильно зависят от температуры. Зависимость чувствительности фотодиодов от длины волны имеет явно выраженные максимумы на длинах волн, определяемых материалом полупроводника. Самые дешевые кремниевые фотодиоды имеют максимальную чувствительность в диапазоне 800-900 нм, резко спадающую уже на 1000 нм. Для более длинноволновых диапазонов используют германий и арсенид индия и галлия.
На основе излучателей и детекторов выпускают готовые компоненты – передатчики, приемники и приемопередатчики. Эти компоненты имеют внешний электрический интерфейс ТТЛ или ЭСЛ. Оптический интерфейс – коннектор определенного типа, который часто устанавливают на отрезок волокна, приклеенный непосредственно к кристаллу излучателя или детектора.
Передатчик (transmitter) представляет собой излучатель со схемой управления. Основными оптическими параметрами передатчика являются выходная мощность, длина волны, спектральная ширина, быстродействие и долговечность. Мощность передатчиков указывают для конкретных типов волокон (чтобы в расчетах не учитывать диаграмму направленности, диаметр и апертуру излучателя).
Приемник (receiver) – это детектор с усилителем-формирователем. Приемник характеризуется диапазоном принимаемых волн, чувствительностью, динамическим диапазоном и быстродействием (полосой пропускания).
Поскольку в сетях всегда используется двунаправленная связь, выпускают и трансиверы (transceiver) – сборку передатчика и приемника с согласованными параметрами.