
- •В .И. Варгунин, о.В. Москвичев
- •Оглавление
- •Часть I. Информационные технологии. Основные понятия
- •Глава 1. Основные понятия и определения
- •§ 1. Информационные системы
- •§ 2. Классификация информационных систем
- •§ 3. Структура информационного процесса
- •§ 4. Характеристики и показатели информационных процессов
- •§ 5. Базы данных
- •§ 6. Программное обеспечение
- •Контрольные вопросы
- •Глава 2. Современные мейнфреймы компании iвм
- •§ 7. Особенности мейнфреймов
- •§ 8. Архитектура ibm s/390
- •§ 9. Универсальность ibm s/390
- •§ 10. Новый шаг в развитии мейнфреймов
- •§ 11. Обеспечение отказоустойчивости
- •§ 12. Операционные системы для мейнфреймов ibm
- •Контрольные вопросы
- •Глава 3. Информационные потоки в транспортных системах
- •§ 13. Сеть передачи данных (спд)
- •§ 14. Требования к спд
- •§ 15. Реализация спд
- •Контрольные вопросы
- •Глава 4 Оптоволоконные линии связи
- •§ 16. Особенности оптических систем связи
- •§ 17. Конструкция оптического волокна
- •§ 18. Источники и приемники излучения
- •§ 19. Волоконно – оптический кабель
- •§ 20. Оптические соединители
- •§ 21. Перспективы развития волс
- •Контрольные вопросы
- •Глава 5. Связь и ее роль в организации транспортного обслуживания
- •§ 22. Связь как основа систем управления на транспорте
- •§ 23. Виды транспортной связи и ее назначение
- •§ 24. Современная цифровая технологическая связь российских железных дорог
- •Контрольные вопросы
- •Часть II. Структура и уровни построения асу
- •Глава 6. Понятие об автоматизированной системе управления железнодорожным транспортом
- •§ 25. Основные принципы организации асужт
- •§ 26. Комплекс управления перевозочным процессом
- •§ 27. Управление экономикой, финансами и маркетингом
- •§ 28. Комплекс управления инфраструктурой
- •Контрольные вопросы
- •Глава 7. Системы управления грузовыми перевозками
- •§ 29. Автоматизированная система оперативного управления перевозками (асоуп)
- •§ 30. Сетевая интегрированная российская информационно – управляющая система (сириус)
- •§ 31. Система автоматической идентификации подвижного состава (саи)
- •§ 32. Автоматизированная система управления внешнеторговыми перевозками (асу «грузовой экспресс»)
- •Контрольные вопросы
- •Глава 8. Системы диспетчерского управления перевозками
- •§ 33. Автоматизированная система ведения и анализа графика исполненного движения – гид «Урал – вниижт»
- •§ 34. Центры управления местной работой (асу цумр)
- •Раздел 1;
- •§ 35. Оскар и оскар-м
- •Контрольные вопросы
- •Глава 9. Управление пассажирскими перевозками
- •§ 36. Программы информатизации управления пассажирскими перевозками
- •§ 37. Общая характеристика системы «Управления пассажирскими перевозками»
- •§ 38. Подсистемы асу «Экспресс – 3»
- •§ 39. Информационное и технологическое обеспечение системы «Управления пассажирскими перевозками»
- •Контрольные вопросы
- •Глава 10. Управление материальными ресурсами и финансами на железнодорожном транспорте
- •§ 40. Единая корпоративная автоматизированная система управления финансами и ресурсами оао «ржд» (екасуфр)
- •§ 41. Информационно – аналитическая система корпоративного управления и прогнозирования (иаскуп)
- •§ 42. Автоматизированная система «Централизованной подготовки и оформления перевозочных документов» (ас этран)
- •Контрольные вопросы
- •Глава 11. Управление инфраструктурой локомотивного хозяйства
- •§ 43. Общая характеристика и цель создания системы асутр
- •§ 44. Функции системы асутр и ее подсистемы
- •§ 45. Средства и технические требования к системе асутр
- •Контрольные вопросы
- •Глава 12. Перспективные технологии слежения и управления железнодорожным подвижным составом
- •§ 46. Современное состояние
- •§ 47. Основные элементы спутниковых систем навигации
- •§ 48. Принцип работы систем спутниковой навигации
- •§ 49. Применение спутниковой навигации на железнодорожном транспорте
- •Контрольные вопросы
- •Глава 13. Взаимодействие различных видов транспорта
- •§ 50. Смешанные технологии грузоперевозок
- •§ 51. Информационно-логистические центры транспортных узлов
- •§ 52. Информационные технологии мультимодальных перевозок
- •§ 53. Основные принципы построения общего информационного пространства транспортного комплекса
- •§ 54. Пассажирская транспортная сеть
- •Контрольные вопросы
§ 17. Конструкция оптического волокна
Световод (сердцевина в оболочке) с защитным покрытием называется оптическим волокном.
Устройство оптоволокна иллюстрирует Рисунок 4.17.1. Внутренняя часть называется сердцевиной (иногда переводят как «ядро»), которая представляет собой нить из стекла или пластика, внешняя – оптической оболочкой волокна, или просто оболочкой (cladding) являющаяся специальным покрытием сердцевины, отражающим свет от ее краев к центру.
В зависимости от траектории распространения света различают одномодовое и многомодовое волокно. Многомодовое (многочастотное) волокно (MMF – Multi Mode Fiber) имеет довольно большой диаметр сердцевины - 50 или 62,5 мкм при диаметре оболочки 125 мкм или 100 мкм пои оболочке 140 мкм. Одномодовое (одночастотное) волокно (SMF – Single Mode Fiber) имеет диаметр сердцевины 8 или 9,5 мкм при том же диаметре оболочки. Снаружи оболочка имеет пластиковое защитное покрытие (coating) толщиной 60 мкм, называемое также защитной оболочкой.
Рисунок 4.17.1 – Оптоволокно в буфере: а – одномодовое, б – многомодовое: 1 – сердцевина; 2 – оптическая оболочка; 3 – защитное покрытие; 4 – буфер (необязательный)
Оптоволокно в первую очередь характеризуется диаметрами сердцевины и оболочки, эти размеры в микрометрах записываются через дробь: 50/125, 62,5/125, 100/140, 8/125, 9,5/125 мкм. Наружный диаметр волокна (с покрытием) тоже стандартизован, в телекоммуникациях в основном используются волокна с диаметром 250 мкм. Применяются также и волокна с буферным покрытием или просто буфером (buffer), диаметром 900 мкм, нанесенным на первичное 250-мкм покрытие.
Одномодовое и многомодовое волокна
Как уже отмечалось, существуют два типа оптоволоконного кабеля: одномодовый и многомодовый. Основное отличие между ними заключается в толщине сердечника и оболочки. Одномодовый световод обычно имеет толщину порядка 8/125 микрон, а многомодовое волокно 50/125 микрон. Эти значения соответствуют диаметру сердечника и диаметру вместе взятых: сердечника и оболочки.
Световой луч, распространяющийся по сравнительно тонкому сердечнику одномодового кабеля, отражается от оболочки не так часто, как это происходит в более толстом сердечнике многомодового кабеля. Для передачи данных в последнем применяется полихромный (многочастотный) свет, а в одномодовом используется свет только одной частоты (монохромное излучение), отсюда они и получили свои названия. Сигнал, передаваемый одномодовым кабелем, генерируется с помощью лазера, и представляет собой волну, естественно, одной длины, в то время как многомодовые сигналы, генерируемые светодиодом (LED – Light Emitted Diode), переносят волны различной длины (Рисунок 4.17.2). В одномодовом кабеле затухания сигнала (потери мощности сигнала) практически исключены. Это и ряд выше перечисленных качеств позволяют одномодовому кабелю функционировать с большей пропускной способностью по сравнению с многомодовым кабелем и преодолевать расстояния в 50 раз длиннее.
С другой стороны, одномодовый кабель намного дороже и имеет сравнительно большой радиус изгиба по сравнению с многомодовым оптическим кабелем, что делает работу с ним неудобной. Большинство оптоволоконных сетей используют многомодовый кабель, который хотя и уступает по производительности одномодовому кабелю, но зато значительно эффективней, чем медный. Телефонные компании и кабельное телевидение, тем не менее, стремятся применять одномодовый кабель, так как он может передавать большее количество данных и на более длинные дистанции.
Рисунок 4.17.2 – Распространение волн в светодиодах: а – одномодовом; б – многомодовом со ступенчатым профилем; в – многомодовом с градиентным профилем: 1 – профиль показателя преломления; 2 – входной импульс; 3 – выходной импульс.
Оба типа волокна характеризуются двумя важнейшими параметрами: затуханием и дисперсией. Затухание обычно измеряется в дБ/км и определяется потерями на поглощение и на рассеяние излучения в оптическом волокне (рис. 4.17.3). Потери на поглощение зависят от чистоты материала, а на рассеяние – от неоднородностей показателя преломления материала.
Рисунок 4.17.3 – График зависимости затухания от длины волны
Другой важнейший параметр оптического волокна – дисперсия. Дисперсия – это рассеяние во времени спекртальных и модовых составляющих оптического сигнала. Существуют три типа дисперсии:
модовая дисперсия – присуща многомодовому волокну и обусловлена наличием большого числа мод, время распространения которых различно;
материальная дисперсия – обусловлена зависимостью показателя преломления от длины волны;
волноводная дисперсия – обусловлена процессами внутри моды и характеризуется зависимостью скорости распространения моды от длины волны.
Затухание и дисперсия у разных типов оптических волокон различны. Одномодовые волокна обладают лучшими характеристиками по затуханию и по полосе пропускания, так как в них распространяется только один луч. Однако одномодовые источники излучения в несколько раз дороже многомодовых. В одномодовое волокно труднее ввести излучение из-за малых размеров световодной жилы, по этой причине одномодовые волокна сложно сращивать с малыми потерями.
Многомодовые волокна более удобны при монтаже, так как в них размер световодной жилы в несколько раз больше, чем в одномодовых волокнах. Многомодовый кабель проще оконцевать оптическими разъемами с малыми потерями (до 0.3 dB) в стыке. На многомодовое волокно рассчитаны излучатели на длину волны 0.85 мкм - самые доступные и дешевые излучатели, выпускаемые в очень широком ассортименте. Но затухание на этой длине волны у многомодовых волокон находится в пределах 3-4 dB/км и не может быть существенно улучшено. Полоса пропускания у многомодовых волокон достигает 800 МГц*км, что приемлемо для локальных сетей связи, но не достаточно для магистральных линий.