
- •Содержание
- •Введение
- •Объём дисциплины и виды учебной работы
- •Тематические планы тематический план для студентов заочной формы обучения
- •Тематический план для студентов заочной формы обучения на базе среднего профессионального юридического образования
- •Тематический план для студентов заочной формы обучения на базе высшего профессионального образования
- •Тема № 7-8: Вариационные ряды и оценка их параметров
- •Литература:
- •Практическое занятие № 3 Тема № 9: Статистическая проверка гипотез
- •Литература:
- •Методические рекомендации по изучению курса и организации самостоятельной работы студентов
- •Тема 1. Случайные события и вероятности
- •Тема 2. Элементы комбинаторики
- •Тема 3. Условные и безусловные вероятности событий
- •Тема 4. Априорные и апостериорные вероятности событий
- •Тема 5. Случайные величины и законы их распределения
- •Тема 6. Числовые характеристики случайных величин
- •Тема 7. Вариационные ряды и способы их представления
- •Тема 8. Оценки параметров эмпирического распределения
- •Тема 9. Статистическая проверка гипотез
- •Варианты контрольных заданий Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Основная литература:
- •Дополнительная литература:
- •Вопросы для подготовки к зачёту
- •«Российская академия правосудия»
- •Контрольное задание
- •«Элементы теории вероятностей и математической статистики в юридической деятельности»
- •Элементы теории вероятностей и математической статистики в юридической деятельности
- •364006, Воронеж, ул. 20-летия Октября, 95
Вариант 9
1. Сколько разных сигналов можно поднять на мачте, имея четыре вымпела разных цветов, если каждый сигнал должен состоять не менее чем из двух вымпелов?
2. Подлежат контролю 250 изделий, из которых 5 нестандартных. Какова вероятность того, что среди наудачу взятых для контроля двух изделий, одно окажется нестандартным?
3. Приборы одного наименования изготавливаются тремя заводами: первый поставляет 45% всех приборов, второй – 30% и третий 25%. Вероятность безотказной работы прибора в течение гарантийного срока равна 0,8 для первого завода, 0,85 для второго и 0,9 для третьего. Наудачу взятый прибор выдержал гарантийный срок. Найти вероятность того, что он изготовлен на втором заводе.
4. Закон распределения случайной величины X задан таблицей:
хi |
5 |
3 |
0 |
2 |
5 |
6 |
рi |
0,05 |
0,15 |
0,3 |
0,25 |
0,15 |
0,1 |
Построить многоугольник распределения вероятностей величины X. Найти математическое ожидание, дисперсию и среднеквадратическое отклонение данной случайной величины.
5. В таблице приложения 2 приведена последовательность случайных значений оцениваемого параметра. Сделайте выборку (n = 60), начиная с 81-го значения. Возьмите в качестве интервалов группировки интервалы (0; 20), (20; 40), ..., (80; 100) и напишите таблицу эмпирического распределения для этих интервалов. Постройте гистограмму, полигон, эмпирическую функцию распределения. Сделайте вывод о виде закона распределения оцениваемого параметра.
6. Используя таблицу эмпирического распределения, полученную при выполнении задания 5, найдите эмпирические среднее, дисперсию и среднеквадратическое отклонение оцениваемого параметра.
7. Используя результаты решения задания 6, для уровня значимости 0,05 проверьте основную гипотезу Н0 о распределении значений оцениваемого параметра по принятому закону.
Вариант 10
1. Есть 4 группы студентов по 8 человек. Необходимо выбрать на студенческую конференцию 4 делегата. Сколько таких способов, если известно, что должен быть хотя бы один представитель первой группы?
2. Для сигнализации об аварии установлено два независимо работающих сигнализатора. Вероятность того, что при аварии сигнализатор сработает, равна 0,95 для первого и 0,9 для второго сигнализатора. Найти вероятность того, что при аварии сработает только один сигнализатор.
3. Путешественник может купить билет в одной из трёх касс железнодорожного вокзала. Вероятность того, что он направился к первой кассе, равна 0,5, ко второй 0,3, к третьей 0,2. Вероятности того, что билетов уже нет в кассах примерно такие: в первой кассе 0,2, во второй 0,3, в третьей 0,4. Путешественник обратился в одну из касс и получил билет. Определить вероятность того, что он направился ко второй кассе.
4. Закон распределения случайной величины X задан таблицей:
хi |
6 |
4 |
2 |
3 |
5 |
7 |
рi |
0,05 |
0,15 |
0,3 |
0,25 |
0,15 |
0,1 |
Построить многоугольник распределения вероятностей величины X. Найти математическое ожидание, дисперсию и среднеквадратическое отклонение данной случайной величины.
5. В таблице приложения 2 приведена последовательность случайных значений оцениваемого параметра. Сделайте выборку (n = 60), начиная с 91-го значения. Возьмите в качестве интервалов группировки интервалы (0; 20), (20; 40), ..., (80; 100) и напишите таблицу эмпирического распределения для этих интервалов. Постройте гистограмму, полигон, эмпирическую функцию распределения. Сделайте вывод о виде закона распределения оцениваемого параметра.
6. Используя таблицу эмпирического распределения, полученную при выполнении задания 5, найдите эмпирические среднее, дисперсию и среднеквадратическое отклонение оцениваемого параметра.
7. Используя результаты решения задания 6, для уровня значимости 0,1 проверьте основную гипотезу Н0 о распределении значений оцениваемого параметра по принятому закону.
Литература