
- •Глава 1. Формационные этапы развития социальной мысли. Первобытно-общинная, рабовладельческая и феодальная общественно-политические формации (доиндустриальная стадия).
- •Глава 2. Капиталистическая формация (индустриальная стадия).
- •§ 1. Формирование марксизма.
- •§ 2. Критический обзор теоретических позиций марксизма-ленинизма о государстве и классах.
- •§ 3. О самодействующей вооружённой организации.
- •§ 4. О военной силе.
- •§ 5. Естественный фактор научного истощения марксизма и экономикс и связанные с данным явлением социальные последствия.
- •Глава 3. Текущее состояние социальной теории.
- •Глава 4. Социалистическая формация (постиндустриальная стадия). Теоретические условия формирования современного вида социальной теории.
- •§ 1. Развитие макрообъектов и органической жизни на примере планеты Земля.
- •Кембрийский период.
- •Ордовикский период.
- •Силурский период.
- •Девонский период.
- •Камнеугольный период.
- •Мезозой.
- •Кайнозой.
- •§ 2. Состав микромира. Краткий обзор физический теорий.
- •§ 3. Социальная физика.
- •§ 4. Два вида производства человека: биологического субъекта и социального субъекта.
- •§ 5. Единичное строение ядра производительных сил.
- •§ 6. Параметры социальных уровней.
- •§ 7. Межуровневые зоны.
- •§ 8. Дифференциальные ряды производственных соединений.
- •§ 9. О законе соответствия производственных отношений характеру развития производительных сил.
- •§ 10. Подсистемные напряжения между производственной с одной стороны и политической, сферой обменных процессов (коммерческой, финансовой) с другой.
- •§ 11. Сравнительная характеристика двух последних меж формационных периодов.
Кайнозой.
Кайнозойская эра – это эра новой жизни (кайнос – новой, зое – жизнь).
К кайнозойской эре относят три периода: палеогеновый, неогеновый и четвертичный.
Накопившееся за это время отложения носят соответствующие названия: третичная система, а палеогеновые и неогеновые, названы отделами.
Продолжительность эры 67 млн. лет, т.е. примерно равна ордовику.
Кайнозой- время альпийского тектогенеза, которое по предположению советского геолога В.А.Обручева стали называть неотектоническим.
Альпийские тектонические движения сформировали горные сооружения Средиземноморья, огромные хребты и островные дуги по побережью Тихого океана.
В докембрийских, палеозойских и мезозойских областях складчатости происходили значительные дифференцированные глыбовые движения. Данный процесс сопровождался изменениями климата, резко выраженными в северном полушарии, где климатические условия стали более суровыми. В этих областях появились мощные покровные ледники.
Кайнозойские отложения богаты нефтью, газом, запасами торфа и строительных материалов. С четвертичными отложениями связаны россыпные месторождения золота, платины, вольфрамита, алмазов и др.
Палеогенный период.
Кайнозойская эта в целом представлена вечнозелёными растениями, - тропическими папоротниками, кипарисами, миртами, лаврами и др.
В конце палеогенного периода, связанного с похолоданием климата, северная граница тропической и субтропической растительности сместилась к югу, и там появились листопадные растения типа дуба, бука, берёзы, клёна, гинкго и хвойные.
В фауне наземных позвоночных господствующее положение заняли плацентарные млекопитающие. В палеогене появились предки многих современных семейств – хищных, копытных, хоботных, грызунов, насекомоядных, китообразных и приматов. Среди данных видов жили также и архаичные специализированные формы (титанотерии, амблиподы и некоторые другие), которые к концу палеогена вымерли, не оставив потомков.
В этот же период происходили процессы обособления материков, на территории которых получали преимущественное развитие отдельные группы млекопитающих. Уже в конце мела окончательно обособилась Австралия, где развивались только однопроходные и сумчатые. В начале эоцена изолировалась Южная Америка, где стали развиваться сумчатые, неполнозубые и низшие обезьяны.
В середине эоцена обособилась Северная Америка, Африка и Евразия. В Африке развивались хоботные, человекообразные обезьяны и хищники. В Северной Америке – тапиры, титанотерии, хищники, лошадиные и др. Иногда между континентами устанавливалась взаимосвязь, и происходил обмен фауной.
Из пресмыкающихся в палеогене жили крокодилы, черепахи и змеи, - близкие к современным формам.
Неогеновый период.
Данное наименование введено в оборот в 1853 году австралийским учёным Гернесом, что означает – «новая геологическая обстановка».
Продолжительность неогена – 25 млн. лет. Подавляющее большинство животных и растений неогена живут на Земле и в наше время. Однако, в неогене произошло изменение пространственного размещения флоры относительно палеогена.
Широколиственные теплолюбивые формы оттеснялись к югу. К концу неогена огромные пространства Евразии покрылись лесами, в которых росли ель, пихта, сосна, кедр, берёза и др.
Из позвоночных господствующее положение заняли наземные млекопитающие, - древние медведи, мастодонты, носороги, собаки, антилопы, быки, овцы, жирафы, человекообразные обезьяны, слоны, настоящие лошади и др.
Изоляция материков способствовала обособлению специфических форм млекопитающих.
Четвертичный период.
Бельгийский геолог Ж.Денуайе в 1829 году выделил под именем четвертичной системы самые молодые отложения, почти повсеместно перекрывающие древние породы. А.П.Павлов предложил называть эту систему антропогенной, поскольку в ней сосредоточены многочисленные фрагменты ископаемого человека.
Продолжительность четвертичного периода и стратиграфическое расчленение данной системы остаётся дискуссионным.
По эволюции фауны млекопитающих, временные параметры четвертичного периода оцениваются в 1,5 – 2 млн. лет, но палеоклиматические данные заставляют ограничиваться промежутков в 600 – 750 тыс. лет.
Деление четвертичной системы осуществляется на два отдела: нижний – плейстоцен и верхний – голоцен.
Особенностью органического мира четвертичного периода является появление мыслящего существа – человека.
Чередование в похолодании и потеплении климата выстраивала прямую зависимость в наступлении и отступлении ледников, что приводило к перемещению животных и растений, которые вынуждены были приспосабливаться к меняющимся условиям. Многие органические формы вымерли. Исчезли мамонты, сибирские или волосатые носороги, титанотерии, гигантские олени, первобытный бык и др.
Для стратиграфии четвертичных отложений главную роль играют кости наземных животных, остатки растений, ледниковые отложения.
В четвертичный период сформировался современный почвенный покров и кора выветривания, состоящие из глин, песков, алевролитов, галечников, брекчий, солёноносных и гипсоносных пород, суглинок, молосса, лессовидных суглинков и лёсса. История происхождения последнего не совсем ясна, хотя геологи склоняются признать его ледниково-эоловую родословную.
В начале четвертичного периода В Северном полушарии существовало два больших гетерогенных материка – Евразия и Северная Америка, площадь которых была значительнее нынешней из-за более высокой приподнятости.
В южном полушарии существовали Южно-Американский, Африканский, Австралийский, Антарктический материки с изолированностью друг от друга.
Четвертичный период характеризуется резкой климатической зональностью. Установлено, что в истории Земли материковые отложения происходили неоднократно в протерозое, в девоне и позднем палеозое на территории современных тропиков. Выяснено, что основной причиной появления материковых оледенений является миграция полюсов. Однако, из данного правила выпадает мезозой, где не обнаружено ледниковых проявлений. На климат оказывает влияние положение Земли по отношению к Солнцу, зависит от угла наклона земной оси, скорости вращения и формы орбиты нашей планеты и других причин. [13]
Принято считать, что чередование ледниковых и межледниковых эпох, есть функция целого ряда переменных величин со средним, суммарным эффектом их действия.
Так водная поверхность отражает в 5 раз меньше солнечной энергии, чем поверхность суши и 30 раз меньше, чем поверхность снега. Поэтому море смягчает климат, делает его более мягким и тёплым. Подсчитано, что понижение среднегодовой температуры в высоких широтах на 0,30 С достаточно для появления ледника. Поскольку лёд отражает солнечную радиацию в 30 раз интенсивнее, чем водная поверхность, то над образующимся ледником температура в последующее время может понизиться на 250 С.
Изменение климата связано и самой солнечной радиацией, потому как её повышение ведёт к образованию озона, задерживающего тепловое излучение Земли, в результате чего происходит потепление.
Итак, перечислим основные особенности развития органического мира в кайнозойскую эру.
Господствующее положение занимают покрытосеменные цветковые высшие растения. Из голосеменных хорошо представлены хвойные, а из споровых – папоротники.
Кайнозойская эра – это эра плацентарных млекопитающих, которые заселили сушу и приспособились к жизни в воздухе и воде.
Происходящие изменения и превращения материи не беспорядочны, а подчиняются определённым законам, многие из которых уже разгадало человечество.
По современным представлениям основой развития земного шара, является дифференциация вещества Земли, которая начинается в нижней мантии. Отсюда, тяжёлые массы, опускаясь, образуют ядро Земли, а лёгкие поднимаются и образуют земную кору и верхнюю мантию.
Геологические, географические и геохимические данные позволяют выделить два основных вида земной коры: материковый и океанический. Кроме них, существуют и переходные: субокеанический и субконтинентальный.
Единой точки зрения на происхождение океанической коры не имеется. С большей уверенностью можно говорить только о закономерностях развития материковой коры, хотя и здесь ещё много непонятного.
В настоящее время широко распространены представления о том, что земная кора прошла в последовательном порядке несколько этапов развития: догеосинклинальный, геосинклинальный, и постгеосинклинальный, который продолжается и в наше время.
Изучение ископаемых остатков животных и растений указывает на то, что органический мир Земли непрерывно развивался и эволюционировал, в результате чего появлялись всё более высокоорганизованные формы жизни. Данные изменения всегда связаны с изменением внешней среды. Академик А.И.Опарин выдвинул идею, суть которой состоит в том, что эволюция жизни на Земле состоит из двух стадий: химической и биологической.
Химическая эволюция по времени соответствует лунной и нуклеарной стадиям развития Земли. Направленность по данному пути развития привела к появлению коацерватов, а затем протобионтов.
Да, предполагается, что биологическая эволюция началась с архея. Однако, мы не можем рассматривать развитие представителей органической материи, как замкнутой системы. Наоборот, развитие живых организмов находится в неразрывной связи с развитием химического состава атмосферы и гидросферы, при одновременном изменении литосферной оболочки Земли. Здесь чётко просматривается жёсткая взаимосвязь и взаимообусловленность данных процессов, где одна составляющая не может измениться без того, чтобы и другие элементы не изменились вместе с ней. Насколько тщательно или корректно эти процессы изучаются?
Совершенно ясно, что, исследуя только результативную часть, проявляющуюся в органической материи, невозможно определить причину качественного различия структурной эволюции живых организмов в пределах одного крупного периода по отношению к другому, не говоря уже о природе процессов, которые осуществляются в переходных зонах. Вне исследования структурных изменений, происходящих в атмосфере, гидросфере и земной коре, вряд ли можно точно понять причину соответствующих изменений, проявляющихся в области органической жизни.
В докембрии, в течение почти 3 млрд. лет жили организмы, не имеющие твёрдых скелетных образований. Вначале появились прокариоты, а на смену им пришли эукариоты, на основе которых развивались все остальные типы растений и животных. Около 1 млрд. лет назад органический мир начал своё развитие уже в многоклеточном варианте. Но, поскольку все докембрийские организмы не имели скелетного образования, то сведения об особенностях их развития носят ограниченный и приближённый характер.
В начале палеозоя (570 млн. лет назад), на Земле появились первые организмы с твёрдым скелетом. По их находкам хорошо определяется, выстраивается направленность и особенности эволюционного развития биологических форм.
Учёными сделаны следующие выводы: процесс эволюции непрерывен, поскольку на всём историческом протяжении рождались всё новые виды, роды, семейства живых организмов.
Процесс эволюции необратим. Ни один вид не возникает дважды. Данная особенность используется при стратиграфическом расчленении отложений. В то же время, процесс эволюции является неравномерным. Одни виды появляются в результате постепенных и медленных изменений. Видоизменение других происходит под воздействием мутаций – мелких скачкообразных преобразований.
Здесь следует учитывать следующее: эволюционный процесс устроен таким образом, что громадное видовое разнообразие биологических существ на низших уровнях развития выступают как самостоятельно действующие организации, тогда как в более сложных соединениях они могут быть представлены в качестве отдельно взятых структурных элементов или органов. Биологическая природа апробирует массу вариантов по отбору материала, пригодного для производства всё более усложняющихся соединений.
Поэтому, в историческом разрезе, отделение одной группы от другой может происходить быстро, а вот промежуточные формы, как правило, малочисленны и имеют малую вероятность обнаружения их в ископаемом состоянии. В этом случае переходные звенья теряются, а геологическая летопись становится неполной.
Так, считается, что археоциаты, как породообразующие организмы исчезли в архейском периоде, но тогда кто отвечает за формирование роговых и костных структур в более сложных организмах? Логичнее предположить, что данные организмы не исчезают, а встраиваются и выполняют локальные функции в усложняющихся органических соединениях.
Тогда особенностью эволюции органической материи является этапность её развития, а главным направлением служит совершенствование форм жизни. В ходе эволюции увеличивается многообразие животных и растений, усложняется их организация, увеличивается приспособляемость и жизнестойкость.
Но, как уже говорилось выше, изменения, которые отслеживаются на фоне развития органической жизни на Земле, есть производная от изменений химического состава атмосферы, гидросферы и структурных изменений земной коры. Органическая материя выступает в качестве развивающейся субстанции на основе углерода. Однако, сам углерод подобен всем планетным образованиям, к примеру, солнечной системы, но органическая жизнь существует только на Земле. Следовательно, вокруг углерода должна существовать оболочка, типа атмосферы на Земле, в которой возможно производство и развитие органического материала.
Появление человека, как мыслящего существа – это результат длительного эволюционного развития органической материи, высшей её формы.
Вот с такими уточнениями можно подвергать анализу историю развития Земли и в том числе и органической жизни, на основе объединения огромного фактического материала, полученного многими поколениями исследователей. Понятно и другое, - в определённые моменты всегда возникает необходимость, когда требуется сделать операцию по более масштабному обобщению и уточнению некоторых исходных положений. Задаётся такая необходимость в результате опережающего развития какого-либо направления в науке, которая ведёт к возникновению несогласованности между возможностями, которые накапливаются и имеются у каждого отдельно взятого научного подразделения.
Так естественный пробел, который возникает у геологов при обосновании особенностей формирования Земли в начальный или раннеархейский период может быть восполнен научным потенциалом, который имеется в распоряжении квантовой физики.
Например, к настоящему времени, не очень корректным является предположение, что Земля сформировалась в результате сгущения газа и космической пыли. Здесь не уточняется, о каком конкретно газе (мезонного или барионного происхождения?) идёт речь. Необходимо дать пояснения на состав и происхождение пылевых образований. А это уже прерогатива наук, изучающих состояние и особенности развитие микромира.
Понятно, что геологи оперируют несколько иными понятиями, рассматривая поведение вещества в макрообъекте. Но, если принят метод стратиграфического подхода в определении этапности развития Земли, то не является исключением из этого правила и строгая последовательность развития материи в пределах микромира. Вряд ли кто в геологии и биогеографии будет утверждать, что млекопитающие появились раньше, чем произошло образование одноклеточного организма.
Поэтому, достаточно сложно воспринимается утверждение о наличии в окружающем пространстве атомарных соединений типа водорода, кислорода, углерода или других сложных сочетаний химических элементов таблицы Менделеева, вне исследования организации вещества в мезонной и барионной группах элементарных частиц.
Напрашивается вопрос: зачем рассматривать эволюцию органических соединений и, каким образом такой подход может помочь при изучении социальных процессов, происходящих в человеческом обществе?
Оказывается, существует аналогия или повторяемость принципов развития материи и сознания. Когда мы исследуем всё разнообразие процессов во Вселенной в совокупном единстве, то получаем более точную и полную информацию о развитии форм жизни, производственной деятельности и на отдельно взятых участках.
Человеческую деятельность нельзя выводить за рамки общего процесса производства, осуществляющегося в окружающей нас Природе. Внимательно отслеживая историю развития органической материи по эрам, можно получить богатейший материал для сравнительного анализа развития человеческого общества по интервалам времени, будь то формации, стадии или социальные уровни, взятые в виде определенных интегралов, где нижняя и верхняя границы фиксируются на основе перехода от использования одного источника энергии к другому.
Именно по этой причине необходимо рассматривать общую эволюцию материи, начиная с электрона, как уже имеющего массу покоя, которая так же должна рассматриваться не иначе, как субстанция «средства производства» в пределах начального этапа развития материи в форме элементарных частиц и до образования сложных нуклонных или атомарных соединений.
Прежде чем сможет образоваться Земля, должен осуществиться эволюционный процесс в мире частиц, за которыми ещё сохраняется название элементарных. Будет полезным провести обзор научных рубежей, которые обозначились в области физики.