
- •Предмет курса «Концепции современного естествознания» и социальные функции естественных наук.
- •5.Наука, религия и философия; естественнонаучное, философское и религиозное мировоззрение.
- •8.Классификация естественных наук.
- •10.Эмпирический и теоретический уровни естествознания, их специфика, роль в научном познании и взаимосвязь. Эмпиризм и рационализм.
- •12.Формы естественнонаучного познания: факт, проблема, идея, гипотеза, теория.
- •15.Понятие и познавательное значение естественнонаучной картины мира и стиля научного мышления.
- •1. Понятие научной картины мира
- •Объективные общие и специфические предпосылки возникновения и развития представлений о природе в архаическом и раннетрадиционном обществе.
- •22.Особенности механистической картины, ее значение для развития науки и историческое место.
- •25.Основные принципы и содержание неклассической картины мира.
- •28.Структурные уровни и виды материи.
- •29.Движение - способ существования материи. Основные формы движения материи и их взаимосвязь. Механицизм, редукционизм, энергетизм.
- •30.Пространство и время, пространственно-временной континуум.
- •31.Корпускулярная и континуальная концепции описания природы.
- •Корпускулярно-волновой дуализм
- •33.Концепции и взгляды на структуру Метагалактики
- •38.Взаимосвязь и взаимообусловленность явлений природы, типы взаимодействий.
- •39.Порядок и хаос в материальном мире, роль синергетики в осмыслении этих явлений.
- •40.Самоорганизация и эволюция материального мира
- •42.Динамические и статистические закономерности в природе
- •45.Принципы относительности, дополнительности, соответствия.
- •46.Принципы универсального эволюционизма.
- •Концепции возникновения и развития жизни на Земле.
- •52.Синтетическая теория эволюции и коэволюции.
- •Концепции происхождения человека
- •56.Учение о ноосфере
- •60.Человек в свете синергетики, кибернетики и физики. Проблема моделирования человека и его сознания.
- •62.Постнеклассический этап современной науки.
- •65.Место российской науки в системе мировой науки и ее современные проблемы.
- •67.Научная этика, биоэтика
- •68.Роль ценностей в науке, объективность в научном творчестве.
33.Концепции и взгляды на структуру Метагалактики
Метагалактика — это доступная наблюдениям часть Вселенной. Метагалактика представляет собой упорядоченную систему галактик. Метагалактика постоянно расширяется, т.е. наша Вселенная нестационарна. Метагалактика имеет сетчатую (ячеистую) структуру, т.е. галактики распределены в ней не равномерно, а вдоль определенных линий — как бы по границам ячеек сетки. Такое строение свидетельствует, что в небольших объемах Метагалактика неоднородна.
В Метагалактике пространство между галактиками заполнено чрезвычайно разряженным межгалактическим газом, пронизывается космическими лучами, в нем существуют магнитные и гравитационные поля, и, возможно, невидимые массы веществ.
В 1929 г. Хаббл открыл замечательную закономерность, которая была названа “законом Хаббла” или законом “красного смещения”: линии галактик смещены к красному концу, причем смещение тем больше, чем дальше находится галактика.
Объяснив красное смещение эффектом Доплера, ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Хотя, безусловно, галактики не разлетаются во все стороны от нашей галактики, которая не занимает никакого особого положения в Метагалактике, а происходит взаимное удаление всех галактик. Следовательно, Метагалактика не стационарна.
Открытие расширения Метагалактики свидетельствует о том, что в прошлом Метагалактика была не такой как сейчас и иной станет в будущем, т.е. Метагалактика эволюционирует.
По красному смещению определены скорости удаления галактик. У многих галактик они очень велики, соизмеримы со скоростью света. Самым большими скоростями (более 250 000 км/с) обладают некоторые квазары, которые считаются самыми удаленными от нас объектами Метагалактики.
Мы живем в расширяющейся Метагалактике. Расширение Метагалактики проявляется только на уровне скоплений и сверхскоплений галактик. Метагалактика имеет одну особенность: не существует центра, от которого разбегаются галактики. Удалось вычислить промежуток времени с начала расширения Метагалактики. Он равен 20-13 млрд. лет. Расширение Метагалактики является самым грандиозным из известных в настоящее время явлений природы.
38.Взаимосвязь и взаимообусловленность явлений природы, типы взаимодействий.
Фундаментальные физические взаимодействия. Все многообразие взаимодействий подразделяется в современной физической картине мира в соответствии с различной интенсивностью протекания взаимодействия элементарных частиц феноменологически делят на 4 типа: сильное, электромагнитное, слабое и гравитационное. По современным представлениям все взаимодействия имеют обменную природу, т.е. реализуются в результате обмена фундаментальными частицами – переносчиками взаимодействий. Каждое из взаимодействий характеризуется так называемой константой взаимодействия, которое определяет его сравнительную интенсивность, временем протекания и радиусом действия.
Электромагнитное взаимодействие. Первой единой теорией электромагнитного поля выступила концепция Дж. Максвелла. Электромагнитные взаимодействия существуют только между заряженными частицами: электрическое поле — между двумя покоящимися заряженными частицами, магнитное — между двумя движущимися заряженными частицами. Электромагнитные силы могут быть как силами притяжения, так и силами отталкивания. Электромагнитное взаимодействие отличается от других участием электромагнитного поля. Электромагнитное взаимодействие обеспечивает связь ядер и электронов в атомах и молекулах вещества, и тем самым определяет возможность устойчивого состояния таких микросистем. Частица-переносчик – фотон (g-квант).
Слабое взаимодействие элементарных частиц вызывает очень медленно протекающие процессы с элементарными частицами, в том числе распады квазистабильных частиц. Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но гораздо сильнее гравитационного. Одноименно заряженные частицы отталкиваются, разноименно — притягиваются. Переносчиками этого типа взаимодействия являются фотоны. В результате слабых взаимодействий нейтроны, входящие в состав атомного ядра, распадаются на три типа частиц: положительно заряженные протоны, отрицательно заряженные электроны и нейтральные нейтрино. Слабое взаимодействие связано со всеми видами b-распада, многие распады элементарных частиц и взаимодействие нейтрино с веществом. Частица – переносчик - векторный бозон.
Сильное взаимодействие удерживает протоны в ядре атома, не позволяя им разлететься под действием электромагнитных сил отталкивания. Сильное взаимодействие ответственно за образование атомных ядер, в нем участвуют только тяжелые частицы: протоны и нейтроны. Ядерные взаимодействия не зависят от заряда частиц, переносчиками этого типа взаимодействий являются глюоны. Примером сильного взаимодействия выступают термоядерные реакции на Солнце и других звездах. Принцип сильного взаимодействия использован при создании водородного оружия. Сильное взаимодействие элементарных частиц вызывает процессы, протекающие с наибольшей по сравнению с другими процессами интенсивностью и приводит к самой сильной связи элементарных частиц. Частицы – переносчики - p-мезоны.
Гравитационное взаимодействие элементарных частиц является наиболее слабым из всех известных. Гравитационное взаимодействие на характерных для элементарных частиц расстояниях дает чрезвычайно малые эффекты из-за малости масс элементарных частиц. Гравитационное взаимодействие имеет бесконечно большой радиус действия. Поэтому, например, на тела, находящиеся на поверхности Земли, действует гравитационное притяжение со стороны всех атомов, из которых состоит Земля. Гравитационное взаимодействие является универсальным, однако в микромире учитывается, так как из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено.