
- •Аннотация
- •Содержание
- •Пояснительная записка
- •Каждое задание включает в себя:
- •Тематика и объём самостоятельной внеаудиторной работы студентов
- •Рекомендации по выполнению разных видов
- •Как самостоятельно изучить теоретический материал
- •2. Как решать задачи (методика д. Пойа)
- •3. Как выполнить домашнюю контрольную работу
- •4. Как создать презентацию
- •5. Как составить кроссворд
- •6. Как подготовить доклад
- •Задания для самостоятельной работы Введение Задание 1. Исследование частоты букв русского алфавита – 1 ч.
- •Раздел 1. Элементы комбинаторики
- •Тема 1.1. Основные понятия комбинаторики Задание 2. Основное правило комбинаторики. Размещения, перестановки, сочетания без повторений – 2 ч.
- •Раздел 1. Элементы комбинаторики
- •Тема 1.1. Основные понятия комбинаторики Задание 3. Размещения, перестановки, сочетания с повторениями – 1 ч.
- •Раздел 1. Элементы комбинаторики
- •Тема 1.1. Основные понятия комбинаторики Задание 4. Задачи на применение формул комбинаторики – 1 ч.
- •Раздел 2. Основы теории графов
- •Тема 2.1. Основные понятия теории графов Задание 5. Исследование графов на связность и эйлеровость – 1 ч.
- •Раздел 2. Основы теории графов
- •Тема 2.1. Основные понятия теории графов Задание 6. Задание графов и деревьев – 1 ч.
- •Раздел 3. Основы теории вероятностей
- •Тема 3.1. Случайные события. Понятие вероятности события Задание 7. Виды событий. Алгебра событий – 1 ч.
- •Раздел 3. Основы теории вероятностей
- •Тема 3.1. Случайные события. Понятие вероятности события Задание 8. Вычисление вероятностей событий по классической формуле определения вероятности – 1,5 ч.
- •Раздел 3. Основы теории вероятностей
- •Тема 3.1. Случайные события. Понятие вероятности события Задание 9. Вычисление вероятностей событий методом графов – 1,5 ч.
- •Раздел 3. Основы теории вероятностей
- •Тема 3.2. Вероятности сложных событий Задание 10. Теоремы сложения и умножения вероятностей – 3 ч.
- •Раздел 3. Основы теории вероятностей
- •Тема 3.2. Вероятности сложных событий Задание 11. Вычисление вероятностей сложных событий с помощью формулы полной вероятности и формулы Байеса – 2 ч.
- •Раздел 3. Основы теории вероятностей
- •Тема 3.3. Схема Бернулли Задание 12. Вычисление вероятностей в схеме Бернулли – 1 ч.
- •Раздел 3. Основы теории вероятностей
- •Тема 3.3. Схема Бернулли Задание 13. Приближённые формулы в схеме Бернулли – 1 ч.
- •Раздел 4. Дискретные случайные величины (дсв)
- •Тема 4.1. Дсв: закон и функция распределения Задание 14. Закон распределения и интегральная функция дсв – 1 ч.
- •Раздел 4. Дискретные случайные величины
- •Тема 4.2. Числовые характеристики дсв Задание 15. Нахождение числовых характеристик дсв – 2 ч.
- •1. Пояснения к решению:
- •Раздел 4. Дискретные случайные величины
- •Тема 4.3. Законы распределения дсв Задание 16. Запись распределения и вычисление характеристик для биномиальной дсв – 1 ч.
- •Раздел 4. Дискретные случайные величины
- •Тема 4.3. Законы распределения дсв Задание 17. Запись распределения и вычисление характеристик для геометрически распределённой дсв – 1 ч.
- •Раздел 4. Дискретные случайные величины
- •Тема 4.3. Законы распределения дсв Задание 18. Запись распределения и вычисление характеристик для дсв – 1 ч.
- •Раздел 5. Непрерывные случайные величины (нсв)
- •Тема 5.1. Нсв: функции распределения Задание 19. Геометрическое определение вероятности – 1 ч.
- •Раздел 5. Непрерывные случайные величины (нсв)
- •Тема 5.1. Нсв: функции распределения Задание 20. Вычисление вероятностей, запись функции плотности и интегральной функции распределения дсв – 2 ч.
- •Раздел 5. Непрерывные случайные величины (нсв)
- •Тема 5.2. Числовые характеристики нсв Задание 21. Нахождение числовых характеристик нсв – 2 ч.
- •Раздел 5. Непрерывные случайные величины (нсв)
- •Тема 5.3. Законы распределения нсв Задание 22. Нахождение числовых характеристик для равномерно и показательно распределенной нсв – 1,5 ч.
- •Раздел 5. Непрерывные случайные величины (нсв)
- •Тема 5.3. Законы распределения нсв Задание 23. Нахождение числовых характеристик для нормально распределенной нсв – 1,5 ч.
- •Раздел 6. Закон больших чисел
- •Тема 6.1. Закон больших чисел Задание 24. Неравенство Чебышева, статистическое определение вероятности – 1 ч.
- •Раздел 7. Основы математической статистики
- •Тема 7.1. Основы математической статистики Задание 25. Сбор и обработка статистических данных – 2 ч.
- •Блок «Познай себя!»
- •Блок «Моя группа – какая она?»
- •Блок «Моя планета, моя страна, мой город»
- •Раздел 7. Основы математической статистики
- •Тема 7.1. Основы математической статистики Задание 26. Интервальное оценивание м(х) и вероятности события – 2 ч.
- •1. Нахождение интервальной оценки математического ожидания нормального распределения при известной дисперсии (известном среднеквадратическом отклонении)
- •2. Нахождение интервальной оценки вероятности события
- •Итоговое повторение
- •Критерии оценки выполнения самостоятельной внеаудиторной работы
- •Список литературы
- •Приложение 1
- •Приложение 2
Раздел 7. Основы математической статистики
Тема 7.1. Основы математической статистики Задание 26. Интервальное оценивание м(х) и вероятности события – 2 ч.
Цель: формирование умения рассчитывать доверительные интервалы с заданной надежностью для математического ожидания и вероятности события.
Задание для самостоятельной внеаудиторной работы:
26.1. Вспомните, какая оценка называется интервальной. Изучите алгоритмы нахождения интервальной оценки М[Х] при известной D[Х] нормального распределения и интервальной оценки вероятности события.
26.2.
Исследовалось время безотказной работы
50 лазерных принтеров, выпускаемых
фирмой. Из наблюдений известно, что
среднее квадратичное отклонение времени
безотказной работы
= 16 ч. По результатам исследований
получено среднее время безотказной
работы
=1000
ч. Постройте доверительный интервал с
надежностью 0,9 для среднего времени
безотказной работы.
26.3. Из 225 тестируемых в экстремальных условиях компьютеров 10 вышли из строя. Найдите интервальную оценку вероятности события А – при тестировании компьютер выйдет из стоя - с надежностью 0,99.
Методические указания по выполнению работы:
Интервальной называют такую оценку параметра, которая определяется двумя числами – концами интервала.
При нахождении интервальной оценки удобно использовать следующие алгоритмы:
1. Нахождение интервальной оценки математического ожидания нормального распределения при известной дисперсии (известном среднеквадратическом отклонении)
Пусть
–
выборочное среднее, рассчитанное по
данным, полученным в ходе эксперимента,
тогда искомое значение математического
ожидания а с доверительной вероятностью
α будет принадлежать промежутку (
-δ;
+δ):
а
-δ +δ х
δ
– точность оценки, находится по
формуле:
,
где
п – объем выборки,
σ – среднеквадратическое отклонение (задано в условии задачи),
t
– аргумент функции Лапласа, при котором
,
находится по таблице (приложение 2).
Алгоритм поиска доверительного интервала при заданных значениях х*, σ, надежности α можно представить в виде схемы:
Прилож.2
t (
)
Пример 26.1. При контрольном испытании 100 батареек был определен средний срок службы батареек при максимальной нагрузке = 20 часов. Считая, что срок службы батареек распределен нормально с σ = 5 часов, найдите доверительный интервал для оценки с надежностью 0,9 неизвестного математического ожидания а.
Решение.
Требуется найти доверительный интервал
.
Поскольку надежность α = 0,9, то = 0,45.
Найдем t из соотношения Ф(t) = 0,45. По таблице приложения 2 находим t = 1,65.
По
формуле
,
где t = 1,65, σ = 5
часов, п = 100 (число испытаний –
испытывалось 100 батареек), найдем δ:
(часов).
Получаем доверительный интервал ;
20 – 0,825 < a < 20 + 0,825;
19,175 < a < 20,825.
Ответ: с надежностью 0,9 неизвестное математическое ожидание а
принадлежит интервалу (19,175; 20,825).