
- •Курс лекций по учебной дисциплине
- •Содержание
- •Предисловие
- •Модуль 1. Общие сведения о месторождениях полезных ископаемых
- •Лекция 2 (2 часа). Общие сведения о месторождениях полезных ископаемых
- •Вопрос 2. Морфология тел полезных ископаемых. Главные формы рудных тел – пласты, линзы, жилы, трубы или столбы, штокверки, штоки, тела неправильной формы, гнезда (карманы), комбинированные залежи.
- •Вопрос 4. Этапы и стадии формирования руд. Процессы минералонакопления при формировании месторождений протекают в течение длительного времени, которое можно разбить на этапы и стадии.
- •Вопрос 4 . Источники рудного вещества. Среди источников вещества различных генетических типов месторождений выделяют:
- •Модуль 2. Эндогенная серия полезных ископаемых
- •Вопрос 3. Особенности образования раннемагматических месторождений алмазов (Модели образования месторождений алмазов кимберлитового и лампроитового типов).
- •Вопрос 2. Генетические гипотезы, этапы и стадии формирования рудоносных массивов. Ведущими являются магматическая и гидротермальная гипотезы.
- •Лекция 7 (2 часа). Пегматитовые месторождения
- •Вопрос 4. Полезные ископаемые пегматитовых месторождений. Среди пегматитовых месторождений выделяется три генетических класса: простые, перекристаллизованные, метасоматически замещенные.
- •Вопрос 2. Модели образования, геохимическая зональность. Общая схема перераспределения элементов при метасоматическом преобразовании гранитоидов в альбититы и грейзены показана на рисунке 1.
- •Лекция 9 (2 часа). Скарновые месторождения
- •Вопрос 5. Физико-химические условия рудообразования, источники воды и минерального вещества гидротермальных систем, формы переноса минеральных соединений гидротермальными растворами.
- •Вопрос 2. Агенты выветривания. К основным агентам выветривания относятся вода, кислород, углекислота, организмы, аминокислоты, колебания температуры.
- •Вопрос 2. Механогенные месторождения. Механогенные месторождения представлены месторождениями гравия, песка, глины.
- •Вопрос 6. Генетические особенности месторождений фосфоритов.
- •Вопрос 7. Осадочные месторождения горючих полезных ископаемых. К ним относятся, прежде всего, месторождения сапропеля, торфа, угля, горючих сланцев).
- •Рекомендуемая литература
Вопрос 3. Особенности образования раннемагматических месторождений алмазов (Модели образования месторождений алмазов кимберлитового и лампроитового типов).
Наибольшее практическое значение среди раннемагматических месторождений имеют месторождения алмазов. Они связаны с ультраосновными или основными магматическими телами – кимберлитами или лампроитами, приурочены к разломам тектонически активизированных древних платформ. Выделяют несколько главных эпох таких активизаций:
протерозойская (Африканская и Индийская платформы),
раннепалеозойская (Русская),
позднепалеозойская и раннемезозойская (Сибирская, Африканская, Австралийская).
Часто процессы активизации на одной и той же платформе протекают в несколько этапов. Например, на Сибирской платформе это девонский, триасовый, юрско-меловой этапы.
Алмазоносные кимберлитовые магматические тела сложены ультраосновной порфировой породой. Кимберлиты очень редко встречаются на нашей планете. Внешне эта порода очень невзрачна и напоминает бетон, в котором сцементированы обломки разнообразных пород. Названы они по названию города Кимберли на юге Африки. Он возник на месте богатейшего россыпного месторождения алмазов недалеко от реки Оранжевой и был назван по фамилии британского министра колоний того времени. Кимберлиты образуются из магм самого глубинного происхождения, которые зарождаются на глубинах 100-200 км. Кимберлитовые магмы являются результатом частичной выплавки мантийного вещества, и обогащены летучими компонентами (СО2, Н2О, N2).
Алмазоносные кимберлиты выполняют крутопадающие трубообразные тела, приуроченные к глубинным расколам, по которым мантийная магма поднимается в верхние части земной коры. Кимберлитовые трубки в сечении составляют от нескольких метров до нескольких сотен и даже тысяч метров. Они прослежены на глубины свыше 1 км. При этом их поперечные сечения резко сокращаются. Например, трубка Мира в Якутии на глубине 600 м уменьшается в 5 раз. Часто трубки на глубине переходят в дайки.
Кимберлит в трубках цементирует эруптивные брекчии (в обломках которых глубинные породы фундамента или мантии). Среди обломков (или ксенолитов) присутствуют родственные породы – оливиновые ультраосновные породы, перидотиты, эклогитовые сланцы, а также чуждые породы – это обломки осадочных, метаморфических, комагматических комплексов, которые захватываются по пути следования магмы. Образование брекчий связывается с неоднократным взрывообразным прорывом расплава и газов по узким магмоподводящим каналам. Поэтому подобные тела иначе называют кимберлитовыми трубками взрыва.
К магматическим минералам кимберлитов относят алмаз, оливин, пироп, хромит, диопсид, ильменит, магнетит, флогопит, апатит, графит. К наиболее алмазоносным относятся кимберлиты с низким содержанием окислов титана, калия, уменьшением концентраций глинозема, но повышенной хромистостью пиропа и диопсида.
На нашей планете известно более 4000 кимберлитовых трубок, но алмазоносными являются не более 1-2%.
Есть множество гипотез образования алмазов в кимберлитовых трубках. Одна из наиболее принятой – раннемагматическое образование алмазов еще в верхней мантии при температурах 1400 -1900С при очень высоких давлениях (5-9 ГПа) при устойчивом подтоке к местам кристаллизации алмазов углерода и его соединений. Затем такая магма, с некоторым количеством выделившихся из неё кристаллов, поднималась вдоль разломов в период тектонической активизации платформ. При этом образовывались кимберлитовые дайки. Когда давление газов в кимберлитовой магме превосходило внешнее давление – происходил газовый прорыв, сопровождавшийся дроблением горных пород. Таким образом, полости заполнялись обломками и несущей их магмой. На сибирских месторождениях такой прорыв мог начинаться с глубины в 1км и даже 3-4 км.
Другие гипотезы отличаются местом кристаллизации алмазов и источником в магме углерода. Так, алмазы, или их часть могли кристаллизоваться при высоких давлениях непосредственно в самой трубке. Высокие давления возникали в момент прорыва газов. Углерод в кимберлитовой магме мог быть не мантийный, а попадать при ассимиляции кимберлитовой магмой углеродсодержащих пород. Есть точки зрения о происхождении алмазов в связи с пневматолитовыми и другими процессами. Но самой распространенной точкой зрения является гипотеза о раннемагматическом происхождении алмазов в кимберлитовых трубках.
Примером месторождений в России являются, прежде всего, месторождения Якутии, открытые в 50-х годах 20 века. А в последней четверти 20 века было сенсационное обнаружение новой Архангельской алмазоносной провинции. Сечение алмазоносных трубок здесь достигает 300х400м.
Еще большей сенсацией было открытие коренных месторождений алмазов в Австралии в 1979 г. Первое из этих месторождений Аргайл – кимберлитовая трубка, площадью – около 45 га и рядом россыпное месторождение, протягивающееся на 35 км. Это месторождение находится в 100 км от бывшего поселка, теперь города, Кимберли на плато Кимберли. Самое интересное, что в силу исторической случайности или пророчества они были названы задолго до открытия коренных алмазов. Несмотря на редкие находки алмазов в россыпях, этот регион относился к неперспективным, так как в отличие от известных типов алмазоносных провинций, он приурочен не к древним платформам, а к складчатой области. Здесь не были найдены типичные для алмазов кимберлитовые трубки взрыва.
Новый, неизвестный до этого тип алмазов был назван лампроитовым типом. Лампроит – это богатая магнием основная или ультраосновная лампрофировая порода, но в отличие от кимберлита обогащенная также калием. Лампроиты относят к особой группе меланократовых пород – лампрофирам (гипабиссальным интрузивным или субвулканическим породы, которые никогда не образуют обособленных крупных масс – это малые интрузии, некки, трубки взрыва – пространственно всегда связаны с трещинной тектоникой).
Лампроитовые тела, по сравнению с кимберлитовыми трубками, имеют большие размеры. Их формы – трубки в виде бокала шампанского, штоки, силлы и дайки. По сравнению с кимберлитами они бедны глубинными ксенолитами. Лампроитовые расплавы зародились на меньших глубинах по сравнению с кимберлитовыми магмами. Лампроитовые магмы возникали также в результате частичного плавления верхней мантии ультраосновного состава, но несколько отличного от кимберлитовых магм. Для лампроитовых магм характерны низкие концентрации Al, Fe, Ca,, Na, В отличие от кимберлитов в лампроитах редки гранаты и ильменит, преобладают хромшпинелиды, а в основной массе имеется амфибол. Лампроиты отличаются повышенным содержанием Rb, Sr, Ba, Ti, Zr, Pb, Th, U, легких редкоземельных элементов. Многие из этих элементов, включая калий, относят к коровым.
Есть точки зрения, что лампроитовые магмы зарождались в глубинных промежуточных магматических очагах, где мантийные ультраосновные магмы насыщались коровыми элементами. Но механизм формирования алмазов в лампроитах сходен с кимберлитовыми телами. То есть это также раннемагматический минерал.
При поверхностном разрушении алмазоносных трубок образуются россыпи алмазов.
Вопрос 4. Позднемагматические месторождения. Месторождения формируются из остаточного рудного расплава, в котором концентрируется основная масса ценных компонентов. В месторождениях данного типа масса первыми кристаллизуются породообразующие силикатные минералы. Остаточный расплав под влиянием тектонических движений, внутренних напряжений и летучих компонентов заполняет в почти затвердевшей интрузии ослабленные зоны (трещины), различные пустоты и промежутки между зернами силикатных минералов. При этом развивается сидеронитовая структура, когда рудный минерал как бы цементирует зерна силикатов.
Позднемагматическим месторождениям присущи следующие черты:
преимущественно эпигенетический характер рудных тел, имеющих форму секущих жил, линз, труб;
сидеронитовые структуры, преобладание массивных руд над вкрапленными;
крупные размеры рудных тел, значительные масштабы месторождений достаточно богатых руд.
К позднемагматическим относятся следующие типы месторождений:
хромитовые в серпентинизированных дунитах и перидотитах на Урале (Кемпирсайское);
титаномагнетитовые в массивах габбро-перидотит-дунитового состава – на Урале (Качканарское), в Карелии (Пудожгорское), в Норвегии Телнесс), Швеции (Таберг);
платиновые в дунитах, перидотитах и пироксенитах – на Урале (Нижне-Тагильское), на Алдане (Кондёрское);
апатит-нефелиновые в щелочных породах – на Кольском полуострове (Хибины), в Восточной Сибири (Горячегорское, Кия-Шалтырское).
Промышленное значение особенно высоко для хромита, титаномагнетита и апатита, почти вся мировая добыча которых обеспечивается за счет месторождений позднемагматического генезиса.
Месторождения хромитов приурочены к массивам ультраосновных пород, в той или иной степени дифференцированных по составу и серпентинизированных. Массивы имеют форму лакколитов. Обычно их основание сложено серпентинизированными дунитами, в которых и располагаются рудные тела, представленные жилами, линзами, трубами, гнездами и полосами массивных и вкрапленных руд. Текстуры руд полосчатые, пятнистые, нодулярные, брекчиевые и вкрапленные. Структуры мелко- и среднезернистые. Руды сложены хромшпинелидами, магнетитом, тальком, карбонатами, иногда оливином и пироксеном.
Месторождения титаномагнетитов чаще всего генетически связаны с габбро-пироксенит-дунитовыми массивами. Рудные тела, размещение которых контролируется элементами протомагматической тектоники и более поздними разрывными нарушениями, имеют форму жил, линз, гнезд, шлиров. Текстуры руд массивные, полосчатые, пятнистые. Наиболее типична сидеронитовая структура. Основные минералы руд – титаномагнетит, ильменит, рутил. Нерудные минералы представлены пироксеном, амфиболом, основными плагиоклазами, хлоритом, реже биотитом, гранатом.
Апатит-нефелиновые месторождения генетически связаны с массивами щелочных пород. Уникальными среди них считаются месторождения Хибинского щелочного массива на Кольском полуострове. Массив имеет форму лополита конического строения, залегает среди гнейсов и кристаллических сланцев. Он сформировался в результате последовательного внедрения хибинитов, нефелиновых сиенитов и пород ийолит-уртитового ряда. С последними генетически и пространственно связаны наиболее крупные залежи апатитовых руд, создающие в плане кольцо крупных линз. Руды состоят из апатита, нефелина, магнетита, ильменита, сфена, пироксена, лопарита. Они являются комплексными, содержащими промышленные концентрации фосфора, алюминия, титана и редких элементов.
Литература: [1], с. 59-81; [2] с. 51-66; [3], с. 83-95; [9], с. 345 - 402, [10]
Проектные задания студентам по самостоятельной работе по темам 4,5.
Собрать литературные сведения по формированию ликвационных месторождений.
Вопросы для самоконтроля знаний:
Что такое ликвация?
С какими формациями магматических пород связаны ликвационные месторождения?
Какие формы и внутреннее строение имеют интрузивные тела с ликвационными медно-никелевыми месторождениями?
При каких геологических и физико-химических условиях образуются ликвационные медно-никелевые руды?
Изучить особенности формирования расслоенных магматических массивов и связанных с ними раннемагматических полезных ископаемых
Вопросы для самоконтроля знаний:
Какие магматические породы слагают рудоносные расслоенные массивы?;
Какова форма и внутренняя структура расслоенных массивов?;
Что такое кумуляты и как они формируются?
Привести примеры рудных кумулятов в расслоенных магматических массивах.
Подобрать материалы (интернет, публикации) по особенности формирования магматических месторождений алмазов. Назвать характерные особенности условий залегания, строения и состава позднемагматических месторождений.
Вопросы для самоконтроля знаний:
С какими магматическими образованиями связаны месторождения алмазов?
Что такое кимберлиты – состав, строение кимберлитовых трубок
На какой глубине рождаются кимберлитовые магмы?
При каких температурах и давлениях образуются алмазы?
Где происходит кристаллизация алмазов?
Чем отличаются лампроиты от кимберлитов?
Какие типы позднемагматических месторождений имеют промышленное значение?
Лекция 6 (2 часа). Карбонатитовые месторождения
Общая характеристика. Генетические гипотезы, этапы и стадии формирования рудоносных массивов. Форма карбонатитовых тел, зональность карбонатитовых массивов. Примеры месторождений (апатит-магнетитовых, флогопитовых, медных).
Вопрос 1. Общая характеристика (минеральные типы карбонатитов, связь с магматизмом, распространение, геологические структуры). Карбонатиты - это эндогенные скопления карбонатов (преимущественно кальцита, реже доломита, анкерита), которые пространственно и генетически связаны с массивами ультраосновных - щелочных пород.
Карбонатиты на 80-90% состоят из карбонатных минералов. В них также присутствует апатит, флогопит, титаномагнетит, магнетит и редкие минералы бадделит (ZrO2), пирохлор (сложный оксид редких и редкоземельных элементов), перовскит (титанат редких земель), монацит (фосфат редких земель), а также карбонаты редких земель (паризит, бастнезит).
Карбонатитовые месторождения сравнительно редки и содержат специфический комплекс полезных ископаемых, интерес к которым проявился относительно недавно. К настоящему времени обнаружено около 200 массивов карбонатитоносных ультраосновных – щелочных пород. Из них только 20 служат объектами для разработки. На территории России подобные массивы выявлены в Карелии, на Кольском полуострове, в Восточной Сибири, Приморье. За рубежом они известны в США, Канаде, Бразилии, ФРГ, Швеции, Норвегии, Финляндии, Гренландии, Австралии, Индии, Афганистане, ряде районов Африки. В плане штокообразные интрузивы ультраосновного – щелочного состава с карбонатитами занимают километры, десятки километров. Например, Кондерский массив (Алдан) в диаметре – 5,5 км. Ковдорский массив (Кольский полуостров) имеет площадь 40 км2. Возраст карбонатитов разнообразный: на Алдане - докембрийский, на Кольском полуострове – герцинский, в Бразилии, Канаде – киммерийский, в Африке – альпийский. Образование связано с тектономагматической активизацией древних континентов.
Карбонатитовые массивы относятся к многофазовым интрузиям центрального типа и характеризуются концентрически зональным строением. Среди карбонатитов встречаются «открытые» - когда ультраосновная магма достигает поверхности Земли и изливается, и «закрытые» - не доходившие в момент образования до поверхности. Вертикальный размах карбонатитов не менее 10 км. В СССР карбонатитовые тела вскрывались скважинами на глубинах порядка 0,5 км, при этом они не выклинивались.