- •Введение в техническую диагностику
- •1. Предмет и задачи дисциплины, ее значение и роль в обеспечении надежности технических объектов
- •2. Историческая справка о развитии дисциплины
- •3. Основные термины и определения
- •Вопросы для самоконтроля
- •1. Принципы математического моделирования технических объектов диагностирования
- •1.1. Объекты диагностирования, их классификация и характеристика
- •1.2. Классификация математических моделей объектов диагностирования
- •Вопросы для самоконтроля
- •2. Математические модели дискретных устройств
- •2.1. Функциональные модели дискретных устройств
- •2.1.1. Сущность функционального подхода к моделированию
- •2.1.2. Соглашения и допущения при функциональном подходе к моделированию комбинационных дискретных устройств
- •2.1.3. Обобщенная аналитическая математическая модель исправного комбинационного дискретного устройства
- •2.1.4. Табличная математическая модель исправного комбинационного дискретного устройства
- •2.2. Структурные модели дискретных устройств
- •2.2.1. Причины, обусловившие развитие структурного подхода к моделированию
- •2.2.2. Допущения, используемые при структурном подходе к моделированию комбинационных дискретных устройств
- •2.2.3. Логическая сеть – основная структурная математическая модель комбинационного устройства
- •2.2.4. Понятие правильной логической сети
- •2.2.5. Ориентированный граф – эквивалент логической сети
- •2.2.6. Сущность процедуры ранжирования элементов логической сети
- •2.2.7. Способы перехода от правильной логической сети к функциональному описанию комбинационных дискретных устройств
- •2.2.8. Исследование правильности логической сети
- •2.2.9. Скобочная форма как структурная математическая модель комбинационного дискретного устройства
- •Вопросы для самоконтроля
- •3. Виды неисправностей дискретных устройств
- •3.1. Физические основы логического контроля дискретных устройств
- •Шунтирование реагирующих органов бкс
- •3.2.4. Разрыв реагирующих органов Разрыв реагирующих органов ркс
- •Разрыв реагирующих органов бкс
- •3.3. Неисправности путей воздействия и особенности их проявления
- •3.3.1. Короткое замыкание путей воздействия
- •3.3.2. Разрыв путей воздействия
- •3.4. Логические неисправности и особенности их проявления
- •3.4.1. Логические неисправности типа const0
- •3.4.2. Логические неисправности типа const1
- •Вопросы для самоконтроля
- •4. Таблица функций неисправностей как математическая модель объекта диагностирования
- •4.1. Понятие о функции неисправностей
- •4.2. Принципы формализации диагностической информации с помощью таблицы функций неисправностей
- •4.3. Задачи, решаемые на основе анализа таблицы функций неисправностей
- •4.3.1. Применение таблицы функций неисправностей для построения алгоритмов диагностирования
- •4.3.2. Применение таблицы функций неисправностей при построении физической модели объекта в средствах диагностирования
- •Вопросы для самоконтроля
- •5. Анализ работы исправных дискретных устройств и моделирование его неисправных состояний
- •5.1. Формальное представление и анализ работы исправного дискретного устройства
- •5.1.1. Понятие неисправности физических объектов
- •5.1.2. Понятие о правильных и неправильных неисправностях
- •5.1.3. Назначение элементов схемы
- •5.1.4. Работа исправного устройства
- •5.2. Работа дискретного устройства при неисправностях элементной базы типа «обрыв» и «короткое замыкание»
- •5.2.1. Множество неисправностей логического элемента
- •5.2.2. Работа неисправного устройства
- •5.2.3. Существенные и несущественные неисправности. Понятие о транспортировании неисправностей
- •5.3. Неисправности связей элементов комбинационных устройств
- •5.4. Понятие о логических неисправностях
- •Вопросы для самоконтроля
- •6. Математические модели непрерывных устройств логического типа
- •6.1. Построение функциональной схемы непрерывного объекта диагностирования
- •6.1.1. Соглашения, принятые при построении функциональной модели непрерывного объекта диагностирования
- •6.1.2. Процедура построения функциональной модели
- •Соглашение об обозначениях при построении функциональной модели (схемы)
- •Принцип построения функциональной модели (принцип расщепления)
- •6.2. Процедура построения логической модели непрерывного объекта диагностирования
- •Вопросы для самоконтроля
- •7. Построение таблицы функций неисправностей для дискретных устройств
- •7.1. Построение таблицы функций неисправностей для релейно-контактного устройства
- •1. Определение общего числа неисправностей
- •2. Построение таблицы функций неисправностей
- •3. Определение классов электрически неразличимых неисправностей
- •7.2. Построение таблицы функций неисправностей для бесконтактного устройства
- •1. Определение общего числа неисправностей
- •2. Построение таблицы функций неисправностей
- •3. Определение классов электрически неразличимых неисправностей
- •Вопросы для самоконтроля
- •8. Вероятностно-лингвистическая математическая модель системы технического диагностирования ээса
- •8.1. Характеристика диагностической экспертной информации
- •8.2. Принципы, лежащие в основе построения вероятностно-лингвистической математической модели
- •8.2.1. Принцип нечеткой наблюдаемости
- •8.2.2. Принцип нечеткого описания
- •8.2.3. Принцип комбинаторного формализма
- •8.2.4. Обобщенная структура вероятностно-лингвистического метода диагностирования
- •8.3. Алгоритм оптимизации диагностической экспертной информации
- •8.3.1. Декомпозиция задачи построения оптимального множества проверок для отыскания неисправности
- •8.3.2. Классификация множества вероятностно-лингвистических синдромов
- •8.3.3. Построение матрицы различимости
- •8.3.4. Разработка алгоритма рационального покрытия булевых матриц
- •8.4. Идентификация состояния системы технического диагностирования ээса
- •8.4.1. Способ идентификации состояния системы технического диагностирования ээса при использовании «нечетких датчиков»
- •8.4.2. Способ идентификации состояния системы технического диагностирования ээса при использовании «четких датчиков»
- •8.4.3. Способ идентификации состояния системы технического диагностирования ээса при использовании «аналоговых датчиков»
- •8.5. Анализ диагностической экспертной информации и вывод решений
- •8.5.1. Алгоритм выработки рекомендуемого решения на основе анализа диагностической экспертной информации, представленной хорошо определенными вероятностно-лингвистическими синдромами
- •8.5.2. Алгоритм выработки рекомендуемых решений на основе анализа диагностической экспертной информации, представленной плохо определенными вероятностно-лингвистическими синдромами
- •8.6. Обучение диагностической базы эмпирических знаний на основе вероятностно-лингвистического метода диагностирования
- •8.6.1. Процедура обучения
- •8.6.2. Оценка сходимости процедуры обучения
- •Вопросы для самоконтроля
- •Список литературы
- •1. Принципы математического моделирования технических объектов диагностирования 25
- •2. Математические модели дискретных устройств 38
- •3. Виды неисправностей дискретных устройств 54
- •4. Таблица функций неисправностей как математическая модель объекта диагностирования 72
- •5. Анализ работы исправных дискретных устройств и моделирование его неисправных состояний 96
- •6. Математические модели непрерывных устройств логического типа 115
- •7. Построение таблицы функций неисправностей для дискретных устройств 127
- •8. Вероятностно-лингвистическая математическая модель системы технического диагностирования ээса 136
2.2. Структурные модели дискретных устройств
2.2.1. Причины, обусловившие развитие структурного подхода к моделированию
Для многих задач анализа, синтеза, а также диагноза технического состояния дискретных устройств недостаточно их функционального описания. Этим объясняется необходимость разработки и применения структурных математических моделей, т.е. моделей, отражающих не только функции, реализуемые устройством, но и его внутреннюю организацию или структуру. Такой подход выше был назван структурным [30].
Дискретные устройства состоят, как правило, из ряда однотипных или даже одинаковых компонент, соединенных между собой с целью получения определенных функциональных зависимостей. Компонента устройства – это конструктивно и функционально законченная элементарная часть, не подлежащая дальнейшему расщеплению. Поэтому для описания компоненты достаточно той или иной ее функциональной математической модели.
Понятие логического элемента. Под логическим элементом комбинационного устройства будем понимать его компоненту i, которая может рассматриваться как комбинационное подустройство с пi, входами и ki выходами, реализующее определенную систему передаточных функций, заданных с помощью одной из математических моделей в рамках функционального подхода.
2.2.2. Допущения, используемые при структурном подходе к моделированию комбинационных дискретных устройств
При структурном подходе к моделированию комбинационных дискретных устройств приняты следующие допущения [30]:
Ограничимся рассмотрением одновыходных логических элементов.
Многовыходные логические элементы будем представлять совокупностями одновыходных элементов с объединением их одноименных входов.
Основное рассмотрение будем вести относительно логических элементов, обладающих свойством односторонней проводимости (от входов к выходу), свойством разделительности (независимости) входов и свойством существенности всех ni, входов. Примерами таких элементов являются бесконтактные полупроводниковые логические элементы.
2.2.3. Логическая сеть – основная структурная математическая модель комбинационного устройства
В качестве структурной математической модели комбинационного устройства обычно принимается правильная логическая сеть (схема). Дадим неформальное определение логической сети, близкое к известному инженерному понятию функциональной схемы устройства и получившее удобную интерпретацию на языке графов. Но для этого первоначально следует определить ряд вспомогательных понятий.
Базисом логической сети назовем множество функционально разных логических элементов устройства и обозначим его символом Н.
2.2.4. Понятие правильной логической сети
Логическая сеть определяется множеством {i} логических элементов из базиса Н, множеством {х} входных полюсов и множеством {z} выходных полюсов. Каждому входному (выходному) полюсу взаимнооднозначно соответствует входная переменная х, = 1, 2, …, п (выходная функция z, = 1, 2, …, k). Кроме того, для логической сети задаются соединения входных полюсов с входами элементов, соединения выходов элементов с выходными полюсами и, наконец, соединения выходов одних элементов с входами других элементов. В частном случае входной полюс может быть соединен с выходным полюсом. Для представления входного полюса или выхода элемента, соединенного с несколькими входами элементов или выходными полюсами, в логической сети предусматривается узел разветвления (рис. 15). Условимся под соединением или узлом сети подразумевать связь входного полюса, выхода элемента или узла разветвления с входом элемента, с выходным полюсом или с узлом разветвления. Связь узла разветвления с входом элемента или выходным полюсом будем называть ветвью разветвления.
Иллюстрация понятий «узел разветвления», «узел сети»
Логическую сеть, представляющую комбинационное бесконтактное устройство, называют правильной, если никакие два выхода элементов не соединены вместе и если каждую из k функций, реализуемых на выходных полюсах сети, можно представить как булеву функцию входных переменных, сопоставленных п входным полюсам сети.
