- •Введение в техническую диагностику
- •1. Предмет и задачи дисциплины, ее значение и роль в обеспечении надежности технических объектов
- •2. Историческая справка о развитии дисциплины
- •3. Основные термины и определения
- •Вопросы для самоконтроля
- •1. Принципы математического моделирования технических объектов диагностирования
- •1.1. Объекты диагностирования, их классификация и характеристика
- •1.2. Классификация математических моделей объектов диагностирования
- •Вопросы для самоконтроля
- •2. Математические модели дискретных устройств
- •2.1. Функциональные модели дискретных устройств
- •2.1.1. Сущность функционального подхода к моделированию
- •2.1.2. Соглашения и допущения при функциональном подходе к моделированию комбинационных дискретных устройств
- •2.1.3. Обобщенная аналитическая математическая модель исправного комбинационного дискретного устройства
- •2.1.4. Табличная математическая модель исправного комбинационного дискретного устройства
- •2.2. Структурные модели дискретных устройств
- •2.2.1. Причины, обусловившие развитие структурного подхода к моделированию
- •2.2.2. Допущения, используемые при структурном подходе к моделированию комбинационных дискретных устройств
- •2.2.3. Логическая сеть – основная структурная математическая модель комбинационного устройства
- •2.2.4. Понятие правильной логической сети
- •2.2.5. Ориентированный граф – эквивалент логической сети
- •2.2.6. Сущность процедуры ранжирования элементов логической сети
- •2.2.7. Способы перехода от правильной логической сети к функциональному описанию комбинационных дискретных устройств
- •2.2.8. Исследование правильности логической сети
- •2.2.9. Скобочная форма как структурная математическая модель комбинационного дискретного устройства
- •Вопросы для самоконтроля
- •3. Виды неисправностей дискретных устройств
- •3.1. Физические основы логического контроля дискретных устройств
- •Шунтирование реагирующих органов бкс
- •3.2.4. Разрыв реагирующих органов Разрыв реагирующих органов ркс
- •Разрыв реагирующих органов бкс
- •3.3. Неисправности путей воздействия и особенности их проявления
- •3.3.1. Короткое замыкание путей воздействия
- •3.3.2. Разрыв путей воздействия
- •3.4. Логические неисправности и особенности их проявления
- •3.4.1. Логические неисправности типа const0
- •3.4.2. Логические неисправности типа const1
- •Вопросы для самоконтроля
- •4. Таблица функций неисправностей как математическая модель объекта диагностирования
- •4.1. Понятие о функции неисправностей
- •4.2. Принципы формализации диагностической информации с помощью таблицы функций неисправностей
- •4.3. Задачи, решаемые на основе анализа таблицы функций неисправностей
- •4.3.1. Применение таблицы функций неисправностей для построения алгоритмов диагностирования
- •4.3.2. Применение таблицы функций неисправностей при построении физической модели объекта в средствах диагностирования
- •Вопросы для самоконтроля
- •5. Анализ работы исправных дискретных устройств и моделирование его неисправных состояний
- •5.1. Формальное представление и анализ работы исправного дискретного устройства
- •5.1.1. Понятие неисправности физических объектов
- •5.1.2. Понятие о правильных и неправильных неисправностях
- •5.1.3. Назначение элементов схемы
- •5.1.4. Работа исправного устройства
- •5.2. Работа дискретного устройства при неисправностях элементной базы типа «обрыв» и «короткое замыкание»
- •5.2.1. Множество неисправностей логического элемента
- •5.2.2. Работа неисправного устройства
- •5.2.3. Существенные и несущественные неисправности. Понятие о транспортировании неисправностей
- •5.3. Неисправности связей элементов комбинационных устройств
- •5.4. Понятие о логических неисправностях
- •Вопросы для самоконтроля
- •6. Математические модели непрерывных устройств логического типа
- •6.1. Построение функциональной схемы непрерывного объекта диагностирования
- •6.1.1. Соглашения, принятые при построении функциональной модели непрерывного объекта диагностирования
- •6.1.2. Процедура построения функциональной модели
- •Соглашение об обозначениях при построении функциональной модели (схемы)
- •Принцип построения функциональной модели (принцип расщепления)
- •6.2. Процедура построения логической модели непрерывного объекта диагностирования
- •Вопросы для самоконтроля
- •7. Построение таблицы функций неисправностей для дискретных устройств
- •7.1. Построение таблицы функций неисправностей для релейно-контактного устройства
- •1. Определение общего числа неисправностей
- •2. Построение таблицы функций неисправностей
- •3. Определение классов электрически неразличимых неисправностей
- •7.2. Построение таблицы функций неисправностей для бесконтактного устройства
- •1. Определение общего числа неисправностей
- •2. Построение таблицы функций неисправностей
- •3. Определение классов электрически неразличимых неисправностей
- •Вопросы для самоконтроля
- •8. Вероятностно-лингвистическая математическая модель системы технического диагностирования ээса
- •8.1. Характеристика диагностической экспертной информации
- •8.2. Принципы, лежащие в основе построения вероятностно-лингвистической математической модели
- •8.2.1. Принцип нечеткой наблюдаемости
- •8.2.2. Принцип нечеткого описания
- •8.2.3. Принцип комбинаторного формализма
- •8.2.4. Обобщенная структура вероятностно-лингвистического метода диагностирования
- •8.3. Алгоритм оптимизации диагностической экспертной информации
- •8.3.1. Декомпозиция задачи построения оптимального множества проверок для отыскания неисправности
- •8.3.2. Классификация множества вероятностно-лингвистических синдромов
- •8.3.3. Построение матрицы различимости
- •8.3.4. Разработка алгоритма рационального покрытия булевых матриц
- •8.4. Идентификация состояния системы технического диагностирования ээса
- •8.4.1. Способ идентификации состояния системы технического диагностирования ээса при использовании «нечетких датчиков»
- •8.4.2. Способ идентификации состояния системы технического диагностирования ээса при использовании «четких датчиков»
- •8.4.3. Способ идентификации состояния системы технического диагностирования ээса при использовании «аналоговых датчиков»
- •8.5. Анализ диагностической экспертной информации и вывод решений
- •8.5.1. Алгоритм выработки рекомендуемого решения на основе анализа диагностической экспертной информации, представленной хорошо определенными вероятностно-лингвистическими синдромами
- •8.5.2. Алгоритм выработки рекомендуемых решений на основе анализа диагностической экспертной информации, представленной плохо определенными вероятностно-лингвистическими синдромами
- •8.6. Обучение диагностической базы эмпирических знаний на основе вероятностно-лингвистического метода диагностирования
- •8.6.1. Процедура обучения
- •8.6.2. Оценка сходимости процедуры обучения
- •Вопросы для самоконтроля
- •Список литературы
- •1. Принципы математического моделирования технических объектов диагностирования 25
- •2. Математические модели дискретных устройств 38
- •3. Виды неисправностей дискретных устройств 54
- •4. Таблица функций неисправностей как математическая модель объекта диагностирования 72
- •5. Анализ работы исправных дискретных устройств и моделирование его неисправных состояний 96
- •6. Математические модели непрерывных устройств логического типа 115
- •7. Построение таблицы функций неисправностей для дискретных устройств 127
- •8. Вероятностно-лингвистическая математическая модель системы технического диагностирования ээса 136
8.4.3. Способ идентификации состояния системы технического диагностирования ээса при использовании «аналоговых датчиков»
При использовании «аналоговых датчиков» для ввода информации в блок оценки состояния формируемые нечеткие множества отображаются на универсальные, после чего определяются степени сходства входного множества и термов универсальной шкалы. Полученные степени сходства используются в качестве степеней принадлежности термов нечетким значениям соответствующих признаков.
Следующий пример
поясняет вышесказанное. Пусть при
диагностировании ЭЭСА в числе прочих
используется такой признак
,
как своевременность прихода и форма
импульса. Причем, период ожидания, форма
и амплитуда импульсов в зависимости от
режимов функционирования ЭЭСА могут
варьироваться. Рассмотрим два режима.
Исходные данные в каждом из режимов
представлены на рис. 52.
Эталонный и формируемый импульсы
Порядок обработки
исходной информации принят следующий.
Непрерывная в диапазоне ожидания
функция принадлежности формируется в
соответствии с правилом:
где
;
– значение амплитуды
эталонного импульса в момент времени
t;
– значение
амплитуды формируемого импульса в
момент времени t;
.
Получаемая
таким образом функция принадлежности
входного нечеткого множества
при помощи функции
(рис. 53) отображается на универсальную
шкалу –
.
Получая на основании формулы точной
интерпретации (п. 8.3) значение
,
используя функции принадлежности термов
универсальной шкалы определяем искомые
степени сходства. При первом режиме:
= 0,
= 0,78,
= 0,5,
= 0,02. При втором режиме
= 0,
= 0,26,
= 1,
= 0,32. В соответствии с полученными
результатами нечеткое значение признака
в первом случае выражается нечетким
множеством:
{0 / Ti1, 0,78 / Ti2, 0,5 / Ti3, 0,02 / Ti4 / yi},
во втором:
{0 / Ti1, 0,26 / Ti2, 1 / Ti3, 0,32 / Ti4 / yi}.
Универсальная шкала и множественные функции отображения
8.5. Анализ диагностической экспертной информации и вывод решений
Основой метода диагностирования является процедура поиска неисправностей. Причем в технической диагностике под процедурой поиска неисправностей понимается формализованный способ построения алгоритма диагностирования. Таким образом, процедура поиска неисправностей – это конечный набор правил, который может быть реализован алгоритмом.
Будем считать, что
задача определения оптимальной
совокупности проверок
уже решена (см. п. 8.5), и поэтому модель
(8.1) трансформировалась в модель
,
которая
хранится в эвристической базе знаний
интеллектуальной системы контроля
(диагностирования) ЭЭСА наряду с
производными от нее моделями
,
и
,
которые получены из, ,
и
(см. п. 8.5) исключением строк, соответствующих
проверкам, не вошедшим в множество
.
Пусть оптимальная
совокупность проверок представлена
множеством
.
После реализации множества проверок
согласно п. 8.6. состояние объекта
описывается формализованными выражениями
вида:
,
которые назовем текущими вероятностно-лингвистическими синдромами. Существенное значение на порядок принятия решения о неисправности имеет качество диагностической информации, представленной текущими вероятностно-лингвистическими синдромами.
