- •Введение в техническую диагностику
- •1. Предмет и задачи дисциплины, ее значение и роль в обеспечении надежности технических объектов
- •2. Историческая справка о развитии дисциплины
- •3. Основные термины и определения
- •Вопросы для самоконтроля
- •1. Принципы математического моделирования технических объектов диагностирования
- •1.1. Объекты диагностирования, их классификация и характеристика
- •1.2. Классификация математических моделей объектов диагностирования
- •Вопросы для самоконтроля
- •2. Математические модели дискретных устройств
- •2.1. Функциональные модели дискретных устройств
- •2.1.1. Сущность функционального подхода к моделированию
- •2.1.2. Соглашения и допущения при функциональном подходе к моделированию комбинационных дискретных устройств
- •2.1.3. Обобщенная аналитическая математическая модель исправного комбинационного дискретного устройства
- •2.1.4. Табличная математическая модель исправного комбинационного дискретного устройства
- •2.2. Структурные модели дискретных устройств
- •2.2.1. Причины, обусловившие развитие структурного подхода к моделированию
- •2.2.2. Допущения, используемые при структурном подходе к моделированию комбинационных дискретных устройств
- •2.2.3. Логическая сеть – основная структурная математическая модель комбинационного устройства
- •2.2.4. Понятие правильной логической сети
- •2.2.5. Ориентированный граф – эквивалент логической сети
- •2.2.6. Сущность процедуры ранжирования элементов логической сети
- •2.2.7. Способы перехода от правильной логической сети к функциональному описанию комбинационных дискретных устройств
- •2.2.8. Исследование правильности логической сети
- •2.2.9. Скобочная форма как структурная математическая модель комбинационного дискретного устройства
- •Вопросы для самоконтроля
- •3. Виды неисправностей дискретных устройств
- •3.1. Физические основы логического контроля дискретных устройств
- •Шунтирование реагирующих органов бкс
- •3.2.4. Разрыв реагирующих органов Разрыв реагирующих органов ркс
- •Разрыв реагирующих органов бкс
- •3.3. Неисправности путей воздействия и особенности их проявления
- •3.3.1. Короткое замыкание путей воздействия
- •3.3.2. Разрыв путей воздействия
- •3.4. Логические неисправности и особенности их проявления
- •3.4.1. Логические неисправности типа const0
- •3.4.2. Логические неисправности типа const1
- •Вопросы для самоконтроля
- •4. Таблица функций неисправностей как математическая модель объекта диагностирования
- •4.1. Понятие о функции неисправностей
- •4.2. Принципы формализации диагностической информации с помощью таблицы функций неисправностей
- •4.3. Задачи, решаемые на основе анализа таблицы функций неисправностей
- •4.3.1. Применение таблицы функций неисправностей для построения алгоритмов диагностирования
- •4.3.2. Применение таблицы функций неисправностей при построении физической модели объекта в средствах диагностирования
- •Вопросы для самоконтроля
- •5. Анализ работы исправных дискретных устройств и моделирование его неисправных состояний
- •5.1. Формальное представление и анализ работы исправного дискретного устройства
- •5.1.1. Понятие неисправности физических объектов
- •5.1.2. Понятие о правильных и неправильных неисправностях
- •5.1.3. Назначение элементов схемы
- •5.1.4. Работа исправного устройства
- •5.2. Работа дискретного устройства при неисправностях элементной базы типа «обрыв» и «короткое замыкание»
- •5.2.1. Множество неисправностей логического элемента
- •5.2.2. Работа неисправного устройства
- •5.2.3. Существенные и несущественные неисправности. Понятие о транспортировании неисправностей
- •5.3. Неисправности связей элементов комбинационных устройств
- •5.4. Понятие о логических неисправностях
- •Вопросы для самоконтроля
- •6. Математические модели непрерывных устройств логического типа
- •6.1. Построение функциональной схемы непрерывного объекта диагностирования
- •6.1.1. Соглашения, принятые при построении функциональной модели непрерывного объекта диагностирования
- •6.1.2. Процедура построения функциональной модели
- •Соглашение об обозначениях при построении функциональной модели (схемы)
- •Принцип построения функциональной модели (принцип расщепления)
- •6.2. Процедура построения логической модели непрерывного объекта диагностирования
- •Вопросы для самоконтроля
- •7. Построение таблицы функций неисправностей для дискретных устройств
- •7.1. Построение таблицы функций неисправностей для релейно-контактного устройства
- •1. Определение общего числа неисправностей
- •2. Построение таблицы функций неисправностей
- •3. Определение классов электрически неразличимых неисправностей
- •7.2. Построение таблицы функций неисправностей для бесконтактного устройства
- •1. Определение общего числа неисправностей
- •2. Построение таблицы функций неисправностей
- •3. Определение классов электрически неразличимых неисправностей
- •Вопросы для самоконтроля
- •8. Вероятностно-лингвистическая математическая модель системы технического диагностирования ээса
- •8.1. Характеристика диагностической экспертной информации
- •8.2. Принципы, лежащие в основе построения вероятностно-лингвистической математической модели
- •8.2.1. Принцип нечеткой наблюдаемости
- •8.2.2. Принцип нечеткого описания
- •8.2.3. Принцип комбинаторного формализма
- •8.2.4. Обобщенная структура вероятностно-лингвистического метода диагностирования
- •8.3. Алгоритм оптимизации диагностической экспертной информации
- •8.3.1. Декомпозиция задачи построения оптимального множества проверок для отыскания неисправности
- •8.3.2. Классификация множества вероятностно-лингвистических синдромов
- •8.3.3. Построение матрицы различимости
- •8.3.4. Разработка алгоритма рационального покрытия булевых матриц
- •8.4. Идентификация состояния системы технического диагностирования ээса
- •8.4.1. Способ идентификации состояния системы технического диагностирования ээса при использовании «нечетких датчиков»
- •8.4.2. Способ идентификации состояния системы технического диагностирования ээса при использовании «четких датчиков»
- •8.4.3. Способ идентификации состояния системы технического диагностирования ээса при использовании «аналоговых датчиков»
- •8.5. Анализ диагностической экспертной информации и вывод решений
- •8.5.1. Алгоритм выработки рекомендуемого решения на основе анализа диагностической экспертной информации, представленной хорошо определенными вероятностно-лингвистическими синдромами
- •8.5.2. Алгоритм выработки рекомендуемых решений на основе анализа диагностической экспертной информации, представленной плохо определенными вероятностно-лингвистическими синдромами
- •8.6. Обучение диагностической базы эмпирических знаний на основе вероятностно-лингвистического метода диагностирования
- •8.6.1. Процедура обучения
- •8.6.2. Оценка сходимости процедуры обучения
- •Вопросы для самоконтроля
- •Список литературы
- •1. Принципы математического моделирования технических объектов диагностирования 25
- •2. Математические модели дискретных устройств 38
- •3. Виды неисправностей дискретных устройств 54
- •4. Таблица функций неисправностей как математическая модель объекта диагностирования 72
- •5. Анализ работы исправных дискретных устройств и моделирование его неисправных состояний 96
- •6. Математические модели непрерывных устройств логического типа 115
- •7. Построение таблицы функций неисправностей для дискретных устройств 127
- •8. Вероятностно-лингвистическая математическая модель системы технического диагностирования ээса 136
5.4. Понятие о логических неисправностях
При построении неявных математических моделей объектов диагностирования требуется задание математических моделей их неисправностей. Это равносильно выбору из всех возможных неисправностей объекта некоторого класса неисправностей, поддающихся формальному описанию. Так, для устройств, описываемых логической сетью, как правило, задаются классом правильных неисправностей. Среди них часто выделяют класс логических неисправностей, под которыми понимают неисправности логических элементов, а также неисправности связей, сводящиеся к изменению логических функций, реализуемых элементами. В классе логических неисправностей очень распространенными являются так называемые константные неисправности. Это – неисправности элементов и связей, которые эквивалентны такому изменению функций, реализуемых логическими элементами, которое соответствует подаче на один или несколько входов хотя бы одного элемента или на его выход постоянного сигнала (константы) 0 и 1.
Так, к классу константных неисправностей относятся неисправности рассмотренного выше логического элемента И-НЕ, соответствующие столбцам zs1 – zs1 табл. 6.
Если полагают, что в устройстве возможна только одна логическая неисправность, т.е. неисправность одного логического элемента, то в таких случаях говорят о классе одиночных логических неисправностей. Если в устройстве допускается константная неисправность только одного входного полюса или только одного входа (выхода) одного элемента, то тем самым выделяют класс одиночных константных неисправностей. Под классом кратных неисправностей подразумевают произвольные (однако имеющие физический смысл) сочетания одиночных неисправностей, которые в этом случае называют составляющими данной кратной неисправности. Как видно из рассмотренных выше примеров, большое число реальных физических неисправностей осталось за пределами только что введенных классов одиночных или кратных правильных логических или константных неисправностей, хотя даже класс константных неисправностей является достаточно широким. Одним из преимуществ рассмотрения правильных логических или константных неисправностей является возможность использования при этом неявных математических моделей объектов диагностирования
(, S, , i),
что обеспечивает в ряде случаев заметное снижение вычислительных трудностей при построении алгоритмов диагностирования. Для класса неправильных неисправностей, а также неисправностей, нарушающих условия двоичного представления информации в устройстве, необходимо строить явные математические модели (Y, {Yi}), что ограничивает область применения соответствующих методов задачами небольших размерностей.
Как уже указывалось, неисправность преобразует устройство A в устройство Ai Ai и поддерживает его в этом состоянии в течение интервала времени Δt. Если этот интервал не меньше длительности процесса диагностирования технического состояния устройства и, кроме того, начинается не позже, чем процесс диагностирования, то неисправность считается устойчивой. Это значит, что в течение времени диагностирования техническое состояние устройства не изменяется, т.е. в частности в нем не возникают новые и не исчезают имеющиеся неисправности. Если же за время диагностирования техническое состояние устройства изменяется за счет появления в нем новых или исчезновения имевшихся неисправностей, то последние будем называть неустойчивыми, независимо от абсолютных значений их интервалов Δt. Неустойчивую неисправность будем называть сбоем, если для нее Δt значительно меньше длительности процесса диагностирования.
