
- •Пожежна безпека. Пожежі та причини її виникнення
- •Правила поведінки людей при виникненні пожежі:
- •Евакуація людей при виникненні пожежі
- •Засоби пожежогасіння
- •Вогнегасні засоби
- •Радіаційна безпека
- •Природа іонізуючого випромінювання
- •Джерела іонізуючих випромінювань
- •Визначення впливу радіаційно-небезпечних подій на людину.
- •Норми радіаційної безпеки
- •Норми забруднення джерел води, сировини та продовольства
Радіаційна безпека
Радіоактивні речовини та джерела іонізуючого випромінювання широко використовуються у виробництві, наукових дослідженнях, медицині та, на жаль, при створенні зброї. Близько 3 тис підприємств на території України використовують радіоактивні речовини.
Катастрофи, пов'язані з радіоактивними речовинами та застосування ядерної зброї, є найбільш небезпечними надзвичайними ситуаціями. Адже їх наслідки мають найважчий і найдовший негативний вплив на людей.
Радіоактивні речовини та джерела іонізуючих випромінювання широко використовуються у виробництві, наукових дослідженнях, медицині та, на жаль, при створенні зброї. Статистика свідчить, що близько 3 тис. підприємств на території України використовують радіоактивні речовини.
Катастрофи, пов'язані з радіоактивними речовинами та застусування ядерної зброї, є найбільш небезпечними надзвичайними ситуаціями. Адже їх наслідки мають найважчий і найдовший негативний вплив на людей.
Іонізуючі випромінювання — квантове (електромагнітне та корпускулярне випромінювання, під дією якого із нейтральних атомів утворюються іони.
Іонізація живої тканини призводить до розриву молекулярних зв'язків і зміни хімічної структури різних сполук. Зміни в хімічному складі значної кількості молекул спричиняють загибель клітин.
Природа іонізуючого випромінювання
Термін «іонізуюче випромінювання» об'єднує різні за своєю фізичною природою види випромінювань, що мають здатність іонізувати речовину. Людський організм не має органу, який міг би сприймати іонізуюче випромінювання.
Електромагнітне випромінювання включає частину спектра, що починається з жорсткого ультрафіолету, переходить у рентгенівське випромінювання і закінчується гамма-випромінюванням. У практиці для позначення всіх видів електромагнітного іонізуючого випромінювання користуються терміном гамма-випромінювання, тому що як найчастіше його частка у загальному потоці найбільша. Жорстке ультрафіолетове випромінювання — це найбільша короткохвильова частина ультрафіолетового випромінювання, воно, як і рентгенівське, генерується атомами чи молекулами внаслідок зміни стану електронів на зовнішніх оболонках.
Альфа-випромінювання (а) — потік позитивно заряджених частинок, що складаються з двох протонів та двох нейтронів і за структурою відповідють ядрам атомів гелію, які називаються α-частинками та мають високу іонізуючу і малу проникаючу здатність. Відомо близько 40 природних та понад 200 штучних альфа-активних ізотопів. У повітрі альфа-частинки пролітають кілька сантиметрів, добре затримуються речовинами, в шкіру проникають на глибину до 0,1 мм. Найбільшу небезпеку α-випромінювання становить при внутрішньому опроміненні організму та аплікації на шкіру.
Бета-випромінювання (β) — потік електронів або позитронів, що називаються β-частинками. Випромінюються атомними ядрами при бета-розпаді радіоактивних ізотопів. При взаємодії частинок з речовиною утворюється рентгенівське випромінювання. Іонізуюча здатність бета-випромінювання менша, ніж у альфа-випромінювання, а проникаюча здатність вища. Найбільш енергетичні частинки можуть проникнути через шар алюмінію до 5 см.
Гама-випромінювання (у) — електромагнітні хвилі з частотою 3-Ю19 ГЦ і більше, що мають високу проникаючу здатність. Гама-випромінювання виникає при ядерних вибухах, розпадах радіоактивних ядер, елементарних часток, а також при проходженні швидких заряджених часток крізь речовину. Використовується у медицині (променева терапія), для стерилізації приміщень, апаратури, ліків, продуктів харчування. Найбільш ефективно ослаблюється матеріалами з високою щільністю.
Потоки нейтронів, протонів виникають при ядерних реакціях їх дія залежить від енергії часток. Зазвичай, потоки нейтронів поділяють на повільні (холодні), швидкі та надшвидкі.
Для вимірювання радіоактивності використовується цілий ряд одиниць. У практиці радіаційних досліджень дотепер використовуються старі позасистемні одиниці (система СГС) та одиниці системи СІ, що ускладнює сприйняття інформації. Для вимірювання активності (міра кількості радіоактивної речовини, виражена числом радіоактивних розпадів за одиницю часу) застосовується одиниця беккерель (Бк), яка чисельно дорівнює одному ядерному перетворенню за секунду (розпад/с). Позасистемною одиницею активності є Кюрі (Кі), що відповідає активності 1 г радію або 3,7-1010 розпадам за секунду.
Експозиційна доза характеризує іонізуючу здатність випромінювання у повітрі, тобто потенційні можливості іонізуючого випромінювання. За одиницю дози у системі СІ прийнятий Кулон поділений на кілограм (Кл/кг) — це така доза випромінювання, при якій в 1 кг сухого повітря виникає така кількість іонів, що мають заряд 1 кулон електрики кожного знаку. Позасистемною одиницею експозиційної дози є рентген (Р) — одна з найпоширеніших одиниць вимірювання радіоактивності.
Поглинута доза характеризує енергію іонізуючого випромінювання (незалежно від виду випромінювання), яка поглинуті одиницею маси опроміненого середовища. Одиниця вимірювання поглинутої дози в системі СІ — грей (Гр), позасистемна одиниця рад. При підрахунках експозиційну дозу прирівнюють до поглинутої 1 Р= 1 рад. проте для точних розрахунків необхідно враховуй; що 1 Р відповідає поглинута доза у повітрі - 0,87 рад, у воді та яси вій тканині — 0,93 рад.
Біологічний ефект іонізуючого випромінювання надзвичайно сильний і не може бути порівняним з дією будь-якого іншого виду енергії. Однократна смертельна доза іонізуючого виипромінювання для людини становить 5 Гр, тобто відповідає поглиненій енергії випромінювання 5 Дж/кг. Така кількість теплової енергії витрачається на нагрівання склянки води до 100°С або на нагрівання тіла людини не більше, ніж на 0,001°С.
Поглинута доза не відображає біологічну дію радіації, а тільки свідчить про кількість поглинутої енергії. Для оцінки біологічний, впливу різних видів іонізуючих випромінювань на організм людини використовується еквівалентна доза, що у системі СІ вимірюється у зівертах (Зв), у системі СГС — берах (біологічний еквівалент рентгена, БЕР). Еквівалентна доза служить для оцінки радіаційної небезпеки різних видів випромінювань.
Еквівалентна доза характеризує біологічний ефект будь-якого іонізуючого випромінювання, що приведений до впливу, який викликають гама-промені.
При наближених розрахунках, пов'язаних тільки з у-випромінюванням (для випадків зовнішнього опромінення людини без забруднення радіоактивним пилом) можна вважати, що експозиційна, поглинута та еквівалентна дози практично рівні: 1 бер 1 рад = 1 рентген.
Плануючи заходи цивільного захисту, користуються показником колективної еквівалентної дози, тобто дози, яка отримана групою людей (вимірюється у людино-зівертах). Колективну ефективну еквівалентну дозу, яку отримують багато поколінь людей від будь-якого радіоактивного джерела за час його існування, називають очікуваною (повною) колективною ефективною еквівалентною дозою.
Поглинута та експозиційна дози випромінювання, віднесені до одиниці часу, визначають потужність дози (рівень радіації).
Рівень радіації характеризує, наприклад, ступінь забруднення місцевості та вказує, яку дозу може одержати людина, знаходячись на забрудненій місцевості, за певний час. Рівень радіації вимірюється у рентген/годинах, рад/годинах, бер/годинах.
Рівень радіації зменшується у геометричній прогресії через розпад радіоактивних елементів. Швидкість зменшення залежить від періоду напіврозпаду ізотопів, що забруднили територію.
Період напіврозпаду - час, за який розпадається половина атомів радіоактивного елемента (ТІ /2).
Так, якщо зараження відбулося радіоактивним йодом з періодом напіврозпаду 8 діб, зменшення рівня радіації на місцевості буде йти швидко, а при зараженні цезієм та стронцієм з періодами напіврозпаду 28 і ЗО років — довго.