
- •Тема 1. Ведение. Финансовая математика (финансово – экономические расчеты) 7
- •Тема 2. Временная оценка денежных потоков 14
- •Тема 3. Проценты, процентные деньги и процентные ставки 18
- •Тема 4. Функции сложного процента 25
- •4.7. Взаимосвязи между различными функциями 52
- •Тема 9. Финансово – экономические расчеты при операциях с акциями 82
- •Тема 10. Инфляция. Учет инфляции в практике финансово – экономических расчетов 92
- •Тема 11. Финансово – экономические расчеты при предоставлении кредитов 100
- •Тема 12. Финансово – экономические расчеты при лизинговых операциях 106
- •Тема 1. Ведение. Финансовая математика (финансово – экономические расчеты)
- •1.1. История развития и этапы становления науки «финансовая математика». Основополагающие взгляды и концепции, ведущие ученые и их труды
- •1.2. Сущность, функции и задачи финансовой математики на современном этапе
- •Тема 2. Временная оценка денежных потоков
- •2.1. Понятие денежного потока и его составляющие
- •2.2. Виды денежных потоков
- •2.3. Необходимость временной оценки денежных потоков
- •2.4. Арифметическая и геометрическая прогрессия – последовательности чисел для анализа денежных потоков
- •Тема 3. Проценты, процентные деньги и процентные ставки
- •3.1. Понятие процента, процентных денег и процентных ставок
- •3.2. Простые проценты
- •3.2.1. Формула простых процентов
- •3.2.2. Расчет процентов с использованием процентных чисел
- •3.2.3. Переменные ставки
- •3.2.4. Реинвестирование по простым ставкам
- •3.2.5. Определение срока ссуды и величины процентной ставки
- •3.2.6. Дисконтирование по простым процентам
- •Тема 4. Функции сложного процента
- •4.1. Функция №1 – будущая стоимость единицы
- •4.1.1. Формула сложных процентов
- •4.1.2. Начисление процентов за дробное число лет
- •4.1.3. Внутригодовые процентные начисления
- •4.1.4. Номинальная и эффективная ставка процентов
- •4.1.5. Переменная ставка сложных процентов
- •4.1.6. Определение срока ссуды и величины процентной ставки
- •4.1.7. Эквивалентность ставок и замена платежей
- •4.1.8. Изменение финансовых условий
- •4.1.9. Наращение по сложной учетной ставке
- •4.2. Функция №2 – текущая стоимость единицы. Дисконтирование по сложной процентной ставке
- •4.3. Функция №3 – текущая (приведенная) стоимость аннуитета (дисконтирование – обратная задача)
- •4.3.1. Определение текущей стоимости аннуитета
- •4.3.2. Метод депозитной книжки
- •4.3.3. Оценка аннуитета с изменяющейся величиной платежа (переменный аннуитет)
- •4.4. Функция №4 – периодический взнос на погашение кредита (взнос на амортизацию единицы)
- •4.5. Функция 5 – будущая стоимость аннуитета (наращение – прямая задача)
- •4.6. Функция №6 - периодический взнос в фонд накопления (фактор фонда возмещения).
- •4.7. Взаимосвязи между различными функциями
- •Тема 5. Начисление процентов и налоги
- •Тема 6. Валютные расчеты и проценты
- •6.1. Понятие национальной и иностранной валюты
- •6.2. Продажа валюты. Кассовые, форвардные и иные сделки
- •6.3. Валютный арбитраж
- •Тема 7. Финансово – экономические расчеты при операциях с векселями
- •7.1. Понятие векселя. Виды и сущность векселя
- •7.3. Вексельный кредит: понятие, преимущества и недостатки
- •7.3. Дисконтирование векселей по простой и сложной учетной ставке
- •7.3.1. Дисконтирование векселей по простой учетной ставке
- •7.3.3. Дисконтирование векселей по сложной учетной ставке
- •Тема 8. Финансово – экономические расчеты при операциях с облигациями
- •8.1.Основные определения и формулы
- •8.1.1. Понятие облигации
- •8.1.2. Определение стоимости облигации
- •8.1.3. Определение доходности облигаций
- •8.1.3.1. Облигации без выплаты процентов (бескупонные или дисконтные облигации)
- •8.1.3.2. Облигации с выплатой процентов (купонные облигации) Купонные облигации, выкупаемые по номиналу (облигации с периодической выплатой процентов и погашением номинала в конце срока)
- •Купонные облигации с периодической выплатой процентов и с выкупной ценой, отличающейся от номинала
- •Купонные облигации с выплатой процентов и номинала в конце срока
- •Тема 9. Финансово – экономические расчеты при операциях с акциями
- •9.1. Основные определения
- •9.2.Доходы от обыкновенных акций
- •9.2.1. Метод капитализации дохода (модель дисконтирования дивидендов – модель Гордона)
- •9.2.2. Модель нулевого роста дивидендов
- •9.2.3. Модель постоянного роста дивидендов
- •9.2.4. Модель переменного роста (смешанная модель)
- •9.3. Доходы от привилегированных акций
- •Тема 10. Инфляция. Учет инфляции в практике финансово – экономических расчетов
- •10.1. Понятие, сущность и виды инфляции
- •10.2. Индексы
- •10.3. Простые проценты и инфляция
- •10.4. Сложные проценты и инфляция
- •Тема 11. Финансово – экономические расчеты при предоставлении кредитов
- •11.1. Разработка плана погашения долга и способы погашения задолженности
- •11.1.1. Основные определения
- •11.1.2. Разовое погашение кредита в конце срока
- •11.1.3. Погашение основного долга (займа без процентов) равными долями
- •11.1.3. Погашение долга равными срочными уплатами
- •11.1.4. Погашение долга переменными срочными уплатами
- •11.1.5. Создание погасительного фонда
- •11.2. Льготные займы и кредиты
- •Тема 12. Финансово – экономические расчеты при лизинговых операциях
- •12.1. Сущность и содержание лизинга
- •12.2. Виды лизинговых сделок
- •12.3. Способы, виды и состав лизингового платежа
- •12.4. Порядок расчета величины лизингового платежа
- •12.5. Выбор метода финансирования: покупка в собственность или лизинг
2.3. Необходимость временной оценки денежных потоков
В практических финансовых операциях суммы денег вне зависимости от их назначения или происхождения связываются с конкретными моментами или периодами времени.
Необходимость учета временного фактора вытекает из сущности финансирования, кредитования и инвестирования и выражается в принципе неравноценности денег, относящихся к разным моментам времени (принцип изменения ценности денег во времени).
Если сегодняшние деньги ценнее будущих, то, соответственно, будущие поступления менее ценны, чем более близкие при равных их суммах в следствие инфляции.
Непосредственное сравнение разновременных денежных сумм неправомерно. Их сравнение допустимо только при приведении таких сумм к одному моменту времени.
Оценка денежного потока может выполняться в рамках решения двух задач:
прямой, т.е. проводится оценка с позиции будущего (реализуется схема наращения).
Обратной, т.е. производится оценка с позиции настоящего (реализуется схема дисконтирования).
В результате решения каждой из задач денежный поток заменяется одним единовременным платежом. Осуществляется приведение денежного потока к одному моменту времени. Используемые при этом расчетные формулы различны в зависимости от вида потока – постнумерандо или пренумерандо.
Прямая задача предполагает суммарную оценку наращенного денежного потока, т.е.в ее основе лежит будущая стоимость аннуитета.
Обратная задача предполагает суммарную оценку дисконтированного денежного потока, т.е. в ее основе лежит приведенная (текущая) стоимость аннуитета.
2.4. Арифметическая и геометрическая прогрессия – последовательности чисел для анализа денежных потоков
Для того, чтобы надлежащим образом понимать принципы и методы вычислений, используемых в финансовой математике, необходимо знание таких понятий, как арифметическая и геометрическая прогрессии.
Арифметической прогрессией называется последовательность чисел, в которой каждый член получается из предыдущего путем прибавления к нему одного и того же числа z, называемого разностью геометрической прогрессии. Таким образом геометрическую прогрессию можно записать в виде:
а, а+z, a+2z, a+3z, и. т.д.
если z>0, то арифметическая прогрессия называется возрастающей, если z0 – убывающей. Число членов арифметической прогрессии может быть ограниченным или неограниченным.
Приведем без доказательства две общие формулы при использовании арифметической прогрессии:
- формула для определении n-го члена арифметической прогрессии
аn=a+(n-1)z
- формула для нахождения суммы n первых членов арифметической прогрессии:
Свойством арифметической прогрессии является тот факт, что каждый ее член, начиная со второго, равен среднему арифметическому его средних членов, т.е. при n≥2 справедливо
Геометрической прогрессией называется последовательность чисел, в которой каждый член получается из предыдущего путем умножения его на одно и то же число q≠0, называемое знаменателем этой геометрической прогрессии. Таким образом, геометрическую прогрессию можно записать в виде:
а, аq, aq2, aq3, …
Число членов геометрической прогрессии может быть ограниченным или неограниченным. Также приведем без доказательства две общие формулы при использовании геометрической прогрессии:
- формула для определения n-го члена геометрической прогрессии:
an=aqn-1
- формула для определения суммы n первых членов геометрической прогрессии
Свойством геометрической прогрессии с положительными членами является то факт, что каждый ее член, начиная со второго, равен среднему геометрическому соседних членов, т.е. при n≥2 справедливо: