
- •Тема 1. Ведение. Финансовая математика (финансово – экономические расчеты) 7
- •Тема 2. Временная оценка денежных потоков 14
- •Тема 3. Проценты, процентные деньги и процентные ставки 18
- •Тема 4. Функции сложного процента 25
- •4.7. Взаимосвязи между различными функциями 52
- •Тема 9. Финансово – экономические расчеты при операциях с акциями 82
- •Тема 10. Инфляция. Учет инфляции в практике финансово – экономических расчетов 92
- •Тема 11. Финансово – экономические расчеты при предоставлении кредитов 100
- •Тема 12. Финансово – экономические расчеты при лизинговых операциях 106
- •Тема 1. Ведение. Финансовая математика (финансово – экономические расчеты)
- •1.1. История развития и этапы становления науки «финансовая математика». Основополагающие взгляды и концепции, ведущие ученые и их труды
- •1.2. Сущность, функции и задачи финансовой математики на современном этапе
- •Тема 2. Временная оценка денежных потоков
- •2.1. Понятие денежного потока и его составляющие
- •2.2. Виды денежных потоков
- •2.3. Необходимость временной оценки денежных потоков
- •2.4. Арифметическая и геометрическая прогрессия – последовательности чисел для анализа денежных потоков
- •Тема 3. Проценты, процентные деньги и процентные ставки
- •3.1. Понятие процента, процентных денег и процентных ставок
- •3.2. Простые проценты
- •3.2.1. Формула простых процентов
- •3.2.2. Расчет процентов с использованием процентных чисел
- •3.2.3. Переменные ставки
- •3.2.4. Реинвестирование по простым ставкам
- •3.2.5. Определение срока ссуды и величины процентной ставки
- •3.2.6. Дисконтирование по простым процентам
- •Тема 4. Функции сложного процента
- •4.1. Функция №1 – будущая стоимость единицы
- •4.1.1. Формула сложных процентов
- •4.1.2. Начисление процентов за дробное число лет
- •4.1.3. Внутригодовые процентные начисления
- •4.1.4. Номинальная и эффективная ставка процентов
- •4.1.5. Переменная ставка сложных процентов
- •4.1.6. Определение срока ссуды и величины процентной ставки
- •4.1.7. Эквивалентность ставок и замена платежей
- •4.1.8. Изменение финансовых условий
- •4.1.9. Наращение по сложной учетной ставке
- •4.2. Функция №2 – текущая стоимость единицы. Дисконтирование по сложной процентной ставке
- •4.3. Функция №3 – текущая (приведенная) стоимость аннуитета (дисконтирование – обратная задача)
- •4.3.1. Определение текущей стоимости аннуитета
- •4.3.2. Метод депозитной книжки
- •4.3.3. Оценка аннуитета с изменяющейся величиной платежа (переменный аннуитет)
- •4.4. Функция №4 – периодический взнос на погашение кредита (взнос на амортизацию единицы)
- •4.5. Функция 5 – будущая стоимость аннуитета (наращение – прямая задача)
- •4.6. Функция №6 - периодический взнос в фонд накопления (фактор фонда возмещения).
- •4.7. Взаимосвязи между различными функциями
- •Тема 5. Начисление процентов и налоги
- •Тема 6. Валютные расчеты и проценты
- •6.1. Понятие национальной и иностранной валюты
- •6.2. Продажа валюты. Кассовые, форвардные и иные сделки
- •6.3. Валютный арбитраж
- •Тема 7. Финансово – экономические расчеты при операциях с векселями
- •7.1. Понятие векселя. Виды и сущность векселя
- •7.3. Вексельный кредит: понятие, преимущества и недостатки
- •7.3. Дисконтирование векселей по простой и сложной учетной ставке
- •7.3.1. Дисконтирование векселей по простой учетной ставке
- •7.3.3. Дисконтирование векселей по сложной учетной ставке
- •Тема 8. Финансово – экономические расчеты при операциях с облигациями
- •8.1.Основные определения и формулы
- •8.1.1. Понятие облигации
- •8.1.2. Определение стоимости облигации
- •8.1.3. Определение доходности облигаций
- •8.1.3.1. Облигации без выплаты процентов (бескупонные или дисконтные облигации)
- •8.1.3.2. Облигации с выплатой процентов (купонные облигации) Купонные облигации, выкупаемые по номиналу (облигации с периодической выплатой процентов и погашением номинала в конце срока)
- •Купонные облигации с периодической выплатой процентов и с выкупной ценой, отличающейся от номинала
- •Купонные облигации с выплатой процентов и номинала в конце срока
- •Тема 9. Финансово – экономические расчеты при операциях с акциями
- •9.1. Основные определения
- •9.2.Доходы от обыкновенных акций
- •9.2.1. Метод капитализации дохода (модель дисконтирования дивидендов – модель Гордона)
- •9.2.2. Модель нулевого роста дивидендов
- •9.2.3. Модель постоянного роста дивидендов
- •9.2.4. Модель переменного роста (смешанная модель)
- •9.3. Доходы от привилегированных акций
- •Тема 10. Инфляция. Учет инфляции в практике финансово – экономических расчетов
- •10.1. Понятие, сущность и виды инфляции
- •10.2. Индексы
- •10.3. Простые проценты и инфляция
- •10.4. Сложные проценты и инфляция
- •Тема 11. Финансово – экономические расчеты при предоставлении кредитов
- •11.1. Разработка плана погашения долга и способы погашения задолженности
- •11.1.1. Основные определения
- •11.1.2. Разовое погашение кредита в конце срока
- •11.1.3. Погашение основного долга (займа без процентов) равными долями
- •11.1.3. Погашение долга равными срочными уплатами
- •11.1.4. Погашение долга переменными срочными уплатами
- •11.1.5. Создание погасительного фонда
- •11.2. Льготные займы и кредиты
- •Тема 12. Финансово – экономические расчеты при лизинговых операциях
- •12.1. Сущность и содержание лизинга
- •12.2. Виды лизинговых сделок
- •12.3. Способы, виды и состав лизингового платежа
- •12.4. Порядок расчета величины лизингового платежа
- •12.5. Выбор метода финансирования: покупка в собственность или лизинг
1.2. Сущность, функции и задачи финансовой математики на современном этапе
Один из основоположников финансовой математики профессор Н.С. Лунский считал, что высшие финансовые вычисления являются отраслью прикладной математики, посвященной исследованию доступных математическому анализу вопросов финансовой науки, статистики и политической экономии.
Однако финансовая математика сформировалась на стыке финансовой науки и математики и не относится к математическим дисциплинам.
Объектом изучения финансовой математики является финансовая операция, в котрой необходимость использования финансово – экономических вычислений возникает всякий раз, когда в условиях сделки (финансовой операции) прямо или косвенно присутствуют временные параметры: даты, сроки выплат, периодичность поступления денежных средств, отсрочка платежей и др. При этом фактор времени зачастую играет более важную роль, чем стоимостные характеристики финансовой операции, т.к. именно он определяет конечный финансовый результат.
Финансовая математика представляет собой совокупность методов определния изменения стоимости денег, происходящего вследствие их возвратного движения в процессе воспроизводства (опред. М.Е. Четыркина).
Финансовая математика - раздел количественного анализа финансовых операций, предметом которого является изучение финансовых зависимостей между параметрами коммерческих сделок или финансово – банковских операций и разработка на их основе методов решения финансовых задач определенного класса.
К основным задачам финансовой математики относятся:
измерение конечных финансовых результатов операции (сделки, контракта0 для каждой из участвующих сторон;
разработка планов выполнения финансовых операций, в том числе планов погашения задолженности;
измерение зависимости конечных результатов финансовой операции от ее основных параметров;
определение допустимых практических значений параметров финансовых операций и расчет параметров эквивалентного (безубыточного) изменения первоначальных условий операции;
оптимизация портфеля активов, по какому – либо критерию портфеля задолженности.
К основным параметрам финансовой операции относят:
денежные суммы;
временные параметры;
процентные ставки;
иные (дополнительные) величины.
Область применения методов финансовой математики:
разработка условий финансовых контрактов;
финансовое проектирование, в т.ч. сравнение и выбор инвестиционных проектов;
долгосрочное личное страхование, например проектирование и анализ состояния пенсионных фондов (расчет тарифов, оценка способности фондов выполнить свои обязательства перед пенсионерами и др.);
долгосрочное медицинское страхование;
учет векселей;
анализ последствий изменения условий финансовой операции.
Финансовая математика используется в банковском и сберегательном деле, страховании, в работе финансовых организаций, торговых фирм, инвестиционных компаний, фондовых и валютных бирж и т.д.
Тема 2. Временная оценка денежных потоков
2.1. Понятие денежного потока и его составляющие
Современные финансово – банковские операции часто предполагают не отдельные разовые платежи, а некоторую их последовательность во времени (например, погашение задолженности в рассрочку). Такого рода последовательности называют потоком платежей (денежным потоком).
В западной финансовой литературе в аналогичном смысле применяется термин cash flows stream – потоки наличности (дословно, хотя подразумевается поток денег в любом виде).
Отдельный элемент такого рода платежей называется членом потока (cash flow).
Члены потоков могут быть как положительными (поступления), так и отрицательными (выплаты) величинами.