- •Тема 1. Ведение. Финансовая математика (финансово – экономические расчеты) 7
- •Тема 2. Временная оценка денежных потоков 14
- •Тема 3. Проценты, процентные деньги и процентные ставки 18
- •Тема 4. Функции сложного процента 25
- •4.7. Взаимосвязи между различными функциями 52
- •Тема 9. Финансово – экономические расчеты при операциях с акциями 82
- •Тема 10. Инфляция. Учет инфляции в практике финансово – экономических расчетов 92
- •Тема 11. Финансово – экономические расчеты при предоставлении кредитов 100
- •Тема 12. Финансово – экономические расчеты при лизинговых операциях 106
- •Тема 1. Ведение. Финансовая математика (финансово – экономические расчеты)
- •1.1. История развития и этапы становления науки «финансовая математика». Основополагающие взгляды и концепции, ведущие ученые и их труды
- •1.2. Сущность, функции и задачи финансовой математики на современном этапе
- •Тема 2. Временная оценка денежных потоков
- •2.1. Понятие денежного потока и его составляющие
- •2.2. Виды денежных потоков
- •2.3. Необходимость временной оценки денежных потоков
- •2.4. Арифметическая и геометрическая прогрессия – последовательности чисел для анализа денежных потоков
- •Тема 3. Проценты, процентные деньги и процентные ставки
- •3.1. Понятие процента, процентных денег и процентных ставок
- •3.2. Простые проценты
- •3.2.1. Формула простых процентов
- •3.2.2. Расчет процентов с использованием процентных чисел
- •3.2.3. Переменные ставки
- •3.2.4. Реинвестирование по простым ставкам
- •3.2.5. Определение срока ссуды и величины процентной ставки
- •3.2.6. Дисконтирование по простым процентам
- •Тема 4. Функции сложного процента
- •4.1. Функция №1 – будущая стоимость единицы
- •4.1.1. Формула сложных процентов
- •4.1.2. Начисление процентов за дробное число лет
- •4.1.3. Внутригодовые процентные начисления
- •4.1.4. Номинальная и эффективная ставка процентов
- •4.1.5. Переменная ставка сложных процентов
- •4.1.6. Определение срока ссуды и величины процентной ставки
- •4.1.7. Эквивалентность ставок и замена платежей
- •4.1.8. Изменение финансовых условий
- •4.1.9. Наращение по сложной учетной ставке
- •4.2. Функция №2 – текущая стоимость единицы. Дисконтирование по сложной процентной ставке
- •4.3. Функция №3 – текущая (приведенная) стоимость аннуитета (дисконтирование – обратная задача)
- •4.3.1. Определение текущей стоимости аннуитета
- •4.3.2. Метод депозитной книжки
- •4.3.3. Оценка аннуитета с изменяющейся величиной платежа (переменный аннуитет)
- •4.4. Функция №4 – периодический взнос на погашение кредита (взнос на амортизацию единицы)
- •4.5. Функция 5 – будущая стоимость аннуитета (наращение – прямая задача)
- •4.6. Функция №6 - периодический взнос в фонд накопления (фактор фонда возмещения).
- •4.7. Взаимосвязи между различными функциями
- •Тема 5. Начисление процентов и налоги
- •Тема 6. Валютные расчеты и проценты
- •6.1. Понятие национальной и иностранной валюты
- •6.2. Продажа валюты. Кассовые, форвардные и иные сделки
- •6.3. Валютный арбитраж
- •Тема 7. Финансово – экономические расчеты при операциях с векселями
- •7.1. Понятие векселя. Виды и сущность векселя
- •7.3. Вексельный кредит: понятие, преимущества и недостатки
- •7.3. Дисконтирование векселей по простой и сложной учетной ставке
- •7.3.1. Дисконтирование векселей по простой учетной ставке
- •7.3.3. Дисконтирование векселей по сложной учетной ставке
- •Тема 8. Финансово – экономические расчеты при операциях с облигациями
- •8.1.Основные определения и формулы
- •8.1.1. Понятие облигации
- •8.1.2. Определение стоимости облигации
- •8.1.3. Определение доходности облигаций
- •8.1.3.1. Облигации без выплаты процентов (бескупонные или дисконтные облигации)
- •8.1.3.2. Облигации с выплатой процентов (купонные облигации) Купонные облигации, выкупаемые по номиналу (облигации с периодической выплатой процентов и погашением номинала в конце срока)
- •Купонные облигации с периодической выплатой процентов и с выкупной ценой, отличающейся от номинала
- •Купонные облигации с выплатой процентов и номинала в конце срока
- •Тема 9. Финансово – экономические расчеты при операциях с акциями
- •9.1. Основные определения
- •9.2.Доходы от обыкновенных акций
- •9.2.1. Метод капитализации дохода (модель дисконтирования дивидендов – модель Гордона)
- •9.2.2. Модель нулевого роста дивидендов
- •9.2.3. Модель постоянного роста дивидендов
- •9.2.4. Модель переменного роста (смешанная модель)
- •9.3. Доходы от привилегированных акций
- •Тема 10. Инфляция. Учет инфляции в практике финансово – экономических расчетов
- •10.1. Понятие, сущность и виды инфляции
- •10.2. Индексы
- •10.3. Простые проценты и инфляция
- •10.4. Сложные проценты и инфляция
- •Тема 11. Финансово – экономические расчеты при предоставлении кредитов
- •11.1. Разработка плана погашения долга и способы погашения задолженности
- •11.1.1. Основные определения
- •11.1.2. Разовое погашение кредита в конце срока
- •11.1.3. Погашение основного долга (займа без процентов) равными долями
- •11.1.3. Погашение долга равными срочными уплатами
- •11.1.4. Погашение долга переменными срочными уплатами
- •11.1.5. Создание погасительного фонда
- •11.2. Льготные займы и кредиты
- •Тема 12. Финансово – экономические расчеты при лизинговых операциях
- •12.1. Сущность и содержание лизинга
- •12.2. Виды лизинговых сделок
- •12.3. Способы, виды и состав лизингового платежа
- •12.4. Порядок расчета величины лизингового платежа
- •12.5. Выбор метода финансирования: покупка в собственность или лизинг
4.1.5. Переменная ставка сложных процентов
Предоставляя долгосрочную ссуду, часто используют изменяющиеся во времени, но заранее зафиксированные для каждого периода ставки сложных процентов. В случае использования переменных процентных ставок, формула наращение примет следующий вид:
где rk – последовательные во времени значения процентных ставок,
nk – длительность периодов, в течение которых используются соответствующие ставки.
4.1.6. Определение срока ссуды и величины процентной ставки
Для сложных процентов, так же как и для простых необходимо иметь формулы. Позволяющие определить недостающие параметры финансовой операции.
Из
формулы
Срок ссуды:
Ставка сложных процентов:
4.1.7. Эквивалентность ставок и замена платежей
Часто на практике возникает ситуация, когда необходимо произвести между собой сравнение по выгодности условий различных финансовых операций. Условия финансовых операций могут быть весьма разнообразными и напрямую несопоставимыми. Для сопоставления альтернативных вариантов ставки, используемые в условиях контрактов, приводят к единообразному показателю.
Различные финансовые схемы можно считать эквивалентными в том случае, если они приводят к одному и тому же финансовому результату.
Эквивалентная процентная ставка – это ставка, которая для рассматриваемой финансовой операции даст точно такой же денежный результат (наращенную сумму), что и применяемая в этой операции ставка.
Классическим примером эквивалентности являются номинальная (rн) и эффективная ставка процентов (rэ).
Формулы свидетельствуют о том, что не имеет значения какую из ставок (rэ или rн) указывать в расчетах, т.к. их использование дает одну и ту же наращенную сумму.
Если две номинальные ставки определяют одну и ту же эффективную ставку процентов, то они называются эквивалентными.
4.1.8. Изменение финансовых условий
В практической деятельности часто возникает необходимость изменения условий ранее заключенного контракта – объединение нескольких платежей или замене единовременного платежа рядом последовательных платежей.
Для решения такой задачи необходимо построить уравнение эквивалентности. В уравнении эквивалентности сумма заменяемых платежей, приведенная к какому-то одному моменту времени, приравнена к сумме платежей по новому обязательству, приведенному к тому же моменту времени.
В случае с объединением (консолидированием) нескольких платежей в один сумма заменяемых платежей приведенных к одной и той же дате, приравнивается к новому обязательству.
где tj – временной интервал между сроками,
tj = n0 – nj,
n0 – срок консолидации,
nj – базовый срок платежа.
Если платеж FVj со сроком nj надо заменить платежом FV0 со сроком n0 (n0>n1) при использовании сложной процентной ставки r, то уравнение эквивалентности примет вид:
.
4.1.9. Наращение по сложной учетной ставке
Формула наращения сложными процентами по учетной ставке получается путем решения равенства PV=FV(1-d)n относительно FV
где
множитель наращения при начислении
сложных процентов;
- коэффициент наращения.
В некоторых ситуациях по условиям контракта предусматриваются плавающие учетные ставки. Пусть на периоды n1, n2, …, nm установлены учетные ставки соответственно d1, d2, … , dm. Тогла при наращении сложными процентами итоговая сумма за время определяется по формуле:
