
- •Тема 1. Введение Материя и формы ее движения. Значение физики в медицине.
- •Классификация медицинской электронной аппаратуры
- •Классификация медицинской электроники по функциональному назначению:
- •II. Классификация медицинской аппаратуры по принципу действия.
- •Действие электрического тока на организм.
- •Обеспечение электробезопасности при работе с медицинской аппаратурой.
- •Основные требования электробезопасности
- •Классификация медицинской аппаратуры по способу дополнительной защиты от поражающего действия электрического тока.
- •Надежность медицинской аппаратуры
- •Тема 2. Механические колебания
- •Основные определения и характеристики колебательного процесса.
- •Дифференциальное уравнение, решение. График.
- •Полная энергия колеблющейся точки.
- •Затухающие колебания. Дифференциальное уравнение, его решение. График. Логарифмический декремент затухания.
- •Вынужденные колебания. Дифференциальное уравнение. Решение. Резонанс.
- •Автоколебания.
- •Сложение гармонических колебаний, направленных вдоль одной прямой.
- •Сложение взаимно перпендикулярных колебаний.
- •Сложное колебание. Гармонический спектр сложного колебания. Теорема Фурье.
- •Тема 3 механические волны.
- •Уравнение плоской механической волны.
- •Энергия волны. Поток энергии волны. Вектор Умова.
- •Эффект Доплера.
- •Тема 4. Акустика. Природа звука.
- •Физические характеристики звука.
- •Характеристики слухового ощущения (Физиологические характеристики).
- •Шкала уровней громкости.
- •Звуковые методы исследования в клинике.
- •Тема 5. Гидродинамика
- •Уравнение неразрывности струи
- •Уравнение Бернулли
- •Практические следствия из уравнения Бернулли.
- •Вязкость жидкости.
- •Ламинарное и турбулентное течение
- •Распределение скорости и градиента по сечению трубы при ламинарном течении.
- •Течение реальной жидкости по горизонтальной трубе постоянного сечения. Закон Гагена - Пуазейля.
- •Течение жидкости по горизонтальной трубе переменного сечения
- •Течение жидкости по разветвленной трубе
- •Течение жидкости по трубе с эластичными стенками
- •Тема 6. Биореология.
- •Зависимость коэффициента вязкости крови
- •Физические модели кровообращения.
- •Закономерности выброса и распространения крови в большом круге кровообращения.
- •Работа и мощность сердца.
- •Тема 7. Биологические мембраны Значение и функции биологических мембран. Строение мембран.
- •Физиологические функции мембран.
- •Физические свойства мембран.
- •Модели искусственных мембран для изучения свойств мембран.
- •Методы исследования мембран
- •1. Микрокалориметрия.
- •3. Люминесцентный анализ.
- •4. Рентгеноструктурный анализ.
- •5.Электронный парамагнитный резонанс (эпр).
- •6.Ядерный магнитный резонанс (ямр)
- •Диффузия в жидкостях. Закон Фика.
- •Пассивный транспорт веществ.
- •Перенос незаряженных частиц (атомов и молекул) через мембрану
- •Перенос заряженных частиц (ионов) через мембрану.
- •3. Облегченная диффузия.
- •Активный транспорт.
- •Тема 8. Электромагнитные явления в биологических системах.
- •Равенство Доннана.
- •Потенциал покоя
- •Потенциал действия.
- •Распространение потенциала действия. (проведение возбуждения по нервным волокнам).
- •Тема 9. Биофизические принципы исследования электрических полей в организме.
- •2. Электрический дипольный момент диполя
- •Напряженность электрического поля диполя.
- •Потенциал. Разность потенциалов.
- •Диполь в электрическом поле.
- •Токовый диполь. Эквивалентный электрический генератор.
- •Тема 10. Электрокардиография
- •Метод отведений Эйнтховена
- •Блок-схема кардиографа.
- •Вектор-электрокардиография.
- •Тема 11. Электродинамика Электрические колебания.
- •Колебательном контуре.
- •Незатухающие электромагнитные колебания.
- •Затухающие колебания
- •Вынужденные колебания.
- •Тема 12. Импульсные токи Апериодический разряд конденсатора
- •Характеристики импульсных токов.
- •6. Коэффициент заполнения
- •Генераторы импульсных токов.
- •Изменение формы импульса.
- •Дифференцирующая цепь
- •Интегрирующая цепь.
- •Действие импульсного тока на ткани организма
- •Тема 13.
- •Биологические основы реографии
- •Цепи переменного тока, содержащие отдельные элементы
- •Цпт, содержащая последовательно включенные активное, индуктивное и ёмкостное сопротивления
- •Цепь переменного тока, содержащая параллельно включенные активное, индуктивное и ёмкостное сопротивления
- •Тема 14. Электромагнитное поле. Электромагнитные волны
- •Основные положения электромагнитной теории Максвелла.
- •Уравнение электромагнитной волны.
- •Энергия электромагнитной волны
- •Шкала электромагнитных волн.
- •Физические процессы, происходящие в тканях организма под действием токов и электромагнитного поля
- •3. Переменное магнитное поле.
- •Тема 15. Поляризация света
- •Методы получения полностью поляризованного света
- •При отражении от неметаллического зеркала
- •2.При двойном лучепреломлении
- •3. Дихроизм.
- •Система поляризатор – анализатор
- •Вращение плоскости поляризации. Поляриметрия.
- •Поляризационный микроскоп
- •Тема 16. Тепловое излучение. Природа теплового излучения.
- •Характеристики теплового излучения
- •Закон Кирхгофа
- •Спектр излучения ачт
- •Законы излучения абсолютно черного тела
- •Формула Планка и её применение для уточнения законов теплового излучения абсолютно черного тела
- •Тема 17 элементы квантовой физики Волновые свойства частиц. Длина волны де Бройля
- •Электронный микроскоп
- •Люминесценция
- •В зависимости от причины, вызвавшей свечение:
- •Фотолюминесценция
- •Закон Стокса
- •Применение люминесценции в медицине
- •Индуцированное излучение Лазеры – оптические квантовые генераторы
- •Свойства лазерного излучения
- •Применение лазеров в медицине
- •Голография и возможности её применения в медицине
- •Тема 18. Рентгеновское излучение
- •Свойства рентгеновского излучения
- •Механизмы генерации рентгеновского излучения
- •Рентгеновская трубка
- •Зависимость энергии рентгеновского излучения от рабочих параметров рентгеновской трубки.
- •Действие рентгеновского излучения на вещество
- •Применение рентгеновского излучения в медицине
- •Тема 19. Ионизирующее излучение
- •Строение атомного ядра
- •Модели строения ядра
- •Энергия связи
- •Радиоактивность. Виды излучений
- •Основной закон радиоактивного распада
- •Радиоактивность в природе – естественная фоновая радиация
- •Дозиметрия ионизирующего излучения Проникающая и ионизирующая способности радиоактивного излучения
- •Биофизические основы действия ионизирующего излучения на организм
- •Характеристики ионизирующего излучения
- •Дозиметрическая аппаратура
- •Защита от ионизирующего излучения
Дозиметрия ионизирующего излучения Проникающая и ионизирующая способности радиоактивного излучения
Образующиеся
в результате радиоактивного распада
частицы и
кванты, обладающие высокой кинетической
энергией, достаточно легко проникают
в вещество. При этом они взаимодействуют
с электронами атомов вещества, выбивают
их из орбит и таким образом ионизируют
вещество. Кроме того, радиоактивное
излучение может возбудить атом, также
может активировать молекулы, в результате
чего возможны фотохимические реакции.
Наибольшую глубину проникновения частиц в вещество называют пробегом. Проникающую способность частиц оценивают её пробегом в воздухе.
Ионизирующая
способность частиц радиоактивного
излучения пропорциональна их кинетической
энергии и зависит от квадрата их заряда
.
Ионизирующая способность частиц радиоактивного излучения определяется числом ионов, образуемых частицей на протяжении пути пробега.
частица
производит интенсивную ионизацию и
проникает в вещество относительно
неглубоко. В ткани организма она проникает
только на глубину
см.
частицы
обладают меньшей кинетической энергией,
чем
частицы, и имеют один элементарный
заряд. Следовательно, они производят
меньшую ионизацию, чем
частицы, и проникают в вещество на
большую глубину. В ткани организма
частицы проникают на глубину до нескольких
сантиметров.
фотоны
отличаются высокой проникающей
способностью, т.к. не имеют заряда. В
воздухе их пробег составляет десятки
и сотни метров. В ткани организма
излучение проникает на большую глубину
и даже проходит сквозь тело человека
насквозь. Первичная ионизация
фотонов невелика, полный ионизационный
эффект связан со вторичной ионизацией.
Биофизические основы действия ионизирующего излучения на организм
Сложная биологическая реакция организма на действие различных видов ионизирующего излучения имеет много общего и называется лучевой болезнью.
Обладая
высокой энергией,
и рентгеновское излучения выбивают
электроны не только с внешних оболочек
атома, но и с внутренних, глубинных
оболочек. Это вызывает характеристическое
излучение, которое поглощается внутри
вещества.
Отдельные частицы могут взаимодействовать с ядрами атомов тканей организма. Если энергия частиц высока, то ядра атомов могут возбуждаться, могут наблюдаться ядерный фотоэффект (выбрасывание из ядра протонов и нейтронов) и ядерные реакции.
Действие
ионизирующих излучений может вызвать
также нарушение структуры молекул
вещества. При этом возможны взаимодействия
молекул воды с органическими соединениями,
в частности реакция радиолиза. Возникающие
в результате радиолиза воды химически
активные радикалы
и
взаимодействуют с остальными молекулами
биосистемы, что приводит к разрушению
мембран, клеток и функций всего организма.
Ионизирующее излучение действует на сам биологический объект, а также на последующие поколения через наследственный аппарат клеток.
Наиболее чувствительны к радиоактивному излучению ядра клеток. Особенно уязвимы растущие клетки, т.е. детские организмы, включая и период утробного развития в чреве матери. Более всего подвержены влиянию радиоактивного излучения клетки, которые периодически делятся: слизистые оболочки желудка и кишечника, кроветворная ткань, половые клетки и т.д.