
- •Тема 1. Введение Материя и формы ее движения. Значение физики в медицине.
- •Классификация медицинской электронной аппаратуры
- •Классификация медицинской электроники по функциональному назначению:
- •II. Классификация медицинской аппаратуры по принципу действия.
- •Действие электрического тока на организм.
- •Обеспечение электробезопасности при работе с медицинской аппаратурой.
- •Основные требования электробезопасности
- •Классификация медицинской аппаратуры по способу дополнительной защиты от поражающего действия электрического тока.
- •Надежность медицинской аппаратуры
- •Тема 2. Механические колебания
- •Основные определения и характеристики колебательного процесса.
- •Дифференциальное уравнение, решение. График.
- •Полная энергия колеблющейся точки.
- •Затухающие колебания. Дифференциальное уравнение, его решение. График. Логарифмический декремент затухания.
- •Вынужденные колебания. Дифференциальное уравнение. Решение. Резонанс.
- •Автоколебания.
- •Сложение гармонических колебаний, направленных вдоль одной прямой.
- •Сложение взаимно перпендикулярных колебаний.
- •Сложное колебание. Гармонический спектр сложного колебания. Теорема Фурье.
- •Тема 3 механические волны.
- •Уравнение плоской механической волны.
- •Энергия волны. Поток энергии волны. Вектор Умова.
- •Эффект Доплера.
- •Тема 4. Акустика. Природа звука.
- •Физические характеристики звука.
- •Характеристики слухового ощущения (Физиологические характеристики).
- •Шкала уровней громкости.
- •Звуковые методы исследования в клинике.
- •Тема 5. Гидродинамика
- •Уравнение неразрывности струи
- •Уравнение Бернулли
- •Практические следствия из уравнения Бернулли.
- •Вязкость жидкости.
- •Ламинарное и турбулентное течение
- •Распределение скорости и градиента по сечению трубы при ламинарном течении.
- •Течение реальной жидкости по горизонтальной трубе постоянного сечения. Закон Гагена - Пуазейля.
- •Течение жидкости по горизонтальной трубе переменного сечения
- •Течение жидкости по разветвленной трубе
- •Течение жидкости по трубе с эластичными стенками
- •Тема 6. Биореология.
- •Зависимость коэффициента вязкости крови
- •Физические модели кровообращения.
- •Закономерности выброса и распространения крови в большом круге кровообращения.
- •Работа и мощность сердца.
- •Тема 7. Биологические мембраны Значение и функции биологических мембран. Строение мембран.
- •Физиологические функции мембран.
- •Физические свойства мембран.
- •Модели искусственных мембран для изучения свойств мембран.
- •Методы исследования мембран
- •1. Микрокалориметрия.
- •3. Люминесцентный анализ.
- •4. Рентгеноструктурный анализ.
- •5.Электронный парамагнитный резонанс (эпр).
- •6.Ядерный магнитный резонанс (ямр)
- •Диффузия в жидкостях. Закон Фика.
- •Пассивный транспорт веществ.
- •Перенос незаряженных частиц (атомов и молекул) через мембрану
- •Перенос заряженных частиц (ионов) через мембрану.
- •3. Облегченная диффузия.
- •Активный транспорт.
- •Тема 8. Электромагнитные явления в биологических системах.
- •Равенство Доннана.
- •Потенциал покоя
- •Потенциал действия.
- •Распространение потенциала действия. (проведение возбуждения по нервным волокнам).
- •Тема 9. Биофизические принципы исследования электрических полей в организме.
- •2. Электрический дипольный момент диполя
- •Напряженность электрического поля диполя.
- •Потенциал. Разность потенциалов.
- •Диполь в электрическом поле.
- •Токовый диполь. Эквивалентный электрический генератор.
- •Тема 10. Электрокардиография
- •Метод отведений Эйнтховена
- •Блок-схема кардиографа.
- •Вектор-электрокардиография.
- •Тема 11. Электродинамика Электрические колебания.
- •Колебательном контуре.
- •Незатухающие электромагнитные колебания.
- •Затухающие колебания
- •Вынужденные колебания.
- •Тема 12. Импульсные токи Апериодический разряд конденсатора
- •Характеристики импульсных токов.
- •6. Коэффициент заполнения
- •Генераторы импульсных токов.
- •Изменение формы импульса.
- •Дифференцирующая цепь
- •Интегрирующая цепь.
- •Действие импульсного тока на ткани организма
- •Тема 13.
- •Биологические основы реографии
- •Цепи переменного тока, содержащие отдельные элементы
- •Цпт, содержащая последовательно включенные активное, индуктивное и ёмкостное сопротивления
- •Цепь переменного тока, содержащая параллельно включенные активное, индуктивное и ёмкостное сопротивления
- •Тема 14. Электромагнитное поле. Электромагнитные волны
- •Основные положения электромагнитной теории Максвелла.
- •Уравнение электромагнитной волны.
- •Энергия электромагнитной волны
- •Шкала электромагнитных волн.
- •Физические процессы, происходящие в тканях организма под действием токов и электромагнитного поля
- •3. Переменное магнитное поле.
- •Тема 15. Поляризация света
- •Методы получения полностью поляризованного света
- •При отражении от неметаллического зеркала
- •2.При двойном лучепреломлении
- •3. Дихроизм.
- •Система поляризатор – анализатор
- •Вращение плоскости поляризации. Поляриметрия.
- •Поляризационный микроскоп
- •Тема 16. Тепловое излучение. Природа теплового излучения.
- •Характеристики теплового излучения
- •Закон Кирхгофа
- •Спектр излучения ачт
- •Законы излучения абсолютно черного тела
- •Формула Планка и её применение для уточнения законов теплового излучения абсолютно черного тела
- •Тема 17 элементы квантовой физики Волновые свойства частиц. Длина волны де Бройля
- •Электронный микроскоп
- •Люминесценция
- •В зависимости от причины, вызвавшей свечение:
- •Фотолюминесценция
- •Закон Стокса
- •Применение люминесценции в медицине
- •Индуцированное излучение Лазеры – оптические квантовые генераторы
- •Свойства лазерного излучения
- •Применение лазеров в медицине
- •Голография и возможности её применения в медицине
- •Тема 18. Рентгеновское излучение
- •Свойства рентгеновского излучения
- •Механизмы генерации рентгеновского излучения
- •Рентгеновская трубка
- •Зависимость энергии рентгеновского излучения от рабочих параметров рентгеновской трубки.
- •Действие рентгеновского излучения на вещество
- •Применение рентгеновского излучения в медицине
- •Тема 19. Ионизирующее излучение
- •Строение атомного ядра
- •Модели строения ядра
- •Энергия связи
- •Радиоактивность. Виды излучений
- •Основной закон радиоактивного распада
- •Радиоактивность в природе – естественная фоновая радиация
- •Дозиметрия ионизирующего излучения Проникающая и ионизирующая способности радиоактивного излучения
- •Биофизические основы действия ионизирующего излучения на организм
- •Характеристики ионизирующего излучения
- •Дозиметрическая аппаратура
- •Защита от ионизирующего излучения
Методы получения полностью поляризованного света
При отражении от неметаллического зеркала
Для этого, как показал Брюстер, нужно направить падающий луч под углом таким, чтобы его тангенс был равен относительному показателю преломления отражающей среды (рис. 15.3):
.
Это
равенство называют законом Брюстера.
Здесь
- угол Брюстера. Отражённый луч является
полностью поляризованным, а преломленный
луч - частично поляризованным.
2.При двойном лучепреломлении
Известно, что кристаллы обладают оптической анизотропией. Наличие этого свойства является причиной того, что некоторые кристаллы раздваивают луч (рис. 15.4). Один из лучей является сферической волной, он подчиняется законам преломления и называется обыкновенным (о). Другой луч является эллиптической волной, он не преломляется в кристалле и называется необыкновенным (е). Скорость этих лучей различна, но оба эти луча полностью поляризованы.
Рис. 15.4.
В кристалле имеются направления, в которых не происходит двойного лучепреломления, и оба луча распространяются с одной и той же скоростью. Эти направления называются оптическими осями (на рис. 15.4 ось показана штриховой линией). Если в кристалле имеется одна ось, кристалл называется одноосным, если две оси – двуосным и т.д. Мы будем рассматривать только одноосные кристаллы: исландский шпат, кварц, турмалин и др.
Плоскость, проходящая через оптическую ось и падающий луч, называется главной оптической плоскостью. Колебания необыкновенного луча лежат в главной оптической плоскости (вертикальные стрелки на рис. 15.4), а колебания обыкновенного луча – перпендикулярны
главной
о
птической
плоскости (точки на рис. 15.4). Т.о,
обыкновенный и необыкновенный лучи
поляризованы во взаимно перпендикулярных
плоскостях.
Рис. 15.5.
Чтобы
использовать кристаллы в качестве
поляризаторов, нужно разделить
обыкновенный и необыкновенный лучи
внутри кристалла. Это сделал голландский
физик Николь, создав призму, названную
призмой Николя. Он взял кристалл
исландского шпата, разрезал его по
диагонали и снова склеил клеем “канадский
бальзам” (
,
это значение лежит между значениями
и
).
Канадский бальзам является зеркалом
для обыкновенного луча, поэтому
обыкновенный луч отражается и уходит
в сторону нижней грани (в приборах она
закрашивается черной краской, чтобы
луч поглощался). Необыкновенный луч
выходит из кристалла, не преломляясь
(рис. 15.5).
3. Дихроизм.
Поляризованный свет можно получить с помощью поляризационных светофильтров, которые называются поляроидами. Поглощение света происходит в зависимости от ориентации векторов напряженности электрического поля. Т.к в обыкновенном и необыкновенном лучах этот вектор ориентирован в разных плоскостях, то в поляроидах эти лучи поглощаются неодинаково: один поглощается почти полностью, другой частично. Это явление называют анизотропией поглощения или дихроизмом.
Система поляризатор – анализатор
Глаз не воспринимает поляризацию света. Для того чтобы обнаружить поляризацию света, необходим анализатор. Если за
Рис. 15.6
призмой Николя (рис. 15.6) поставить вторую призму Николя так, что их главные плоскости окажутся скрещенными, то вторая призма будет являться анализатором.
Прохождение
света через систему поляризатор –
анализатор описывается при помощи
закона Малюса: и
нтенсивность
света
,
прошедшего через анализатор, связана
с интенсивностью света
,
вышедшего из поляризатора, формулой
.