
- •Часть II
- •Глава 1. Металлы и сплавы 7
- •Глава 2. Материалы из неорганических 75
- •Глава 3. Полимерные пластические материалы (пластмассы) 97
- •Глава 4. Материалы из органических веществ 107
- •Введение
- •Глава 1. Металлы и сплавы
- •1.1. Железо и сплавы на его основе
- •1.1.1. Система железо – углерод
- •1.1.1.1. Компоненты и фазы железоуглеродистых сплавов
- •1.1.1.2. Процессы при структурообразовании железоуглеродистых сплавов
- •1.1.1.3. Структуры железоуглеродистых сплавов
- •1.1.2. Стали и сплавы
- •1.1.2.1. Влияние углерода и примесей на свойства сталей
- •1.1.2.2. Назначение легирующих элементов
- •1.1.2.3. Классификация сталей
- •1.1.2.4. Маркировка сталей
- •1.1.2.5. Конструкционные стали и сплавы
- •1.1.2.5.1. Конструкционные строительные стали и сплавы
- •1.1.2.5.2. Конструкционные машиностроительные стали и сплавы общего назначения
- •1.1.2.5.3. Конструкционные машиностроительные стали и сплавы специального назначения
- •1.1.2.6. Инструментальные стали и сплавы
- •1.1.2.7. Стали и сплавы с особыми физическими свойствами
- •1.1.2.7.1. Стали и сплавы с заданным температурным коэффициентом линейного расширения
- •1.1.2.7.2. Стали и сплавы с высоким электросопротивлением
- •1.1.2.7.3. Магнитные стали и сплавы
- •1.1.3. Чугуны
- •1.1.3.1. Диаграмма состояния железо – графит
- •1.1.3.2. Процесс графитизации
- •1.1.3.3. Строение, свойства, классификация и маркировка чугунов
- •1.1.3.3.1. Влияние состава чугуна на процесс графитизации
- •1.1.3.3.2. Влияние графита на механические свойства отливок
- •1.1.3.3.3. Серый чугун
- •1.1.3.3.4. Высокопрочный чугун с шаровидным графитом
- •1.1.3.3.5. Ковкий чугун
- •1.1.3.3.5. Отбеленные и другие чугуны
- •1.1.4. Виды термической обработки металлов
- •1.1.4.1. Превращения, протекающие в структуре стали при нагреве и охлаждении
- •2. Превращение аустенита в перлит при медленном охлаждении.
- •3. Превращение аустенита в мартенсит при высоких скоростях охлаждения
- •4. Превращение мартенсита в перлит.
- •1.1.4.2. Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •1.1.4.2.1. Отжиг и нормализация. Назначение и режимы
- •1.1.4.2.2. Закалка
- •1.1.4.3.3. Отпуск
- •1.1.5. Химико-термическая обработка стали
- •1.1.6. Методы упрочнения стали
- •1.1.6.1. Термомеханическая обработка стали
- •1.1.6.2. Поверхностное упрочнение стальных деталей
- •1.1.6.2.1. Закалка токами высокой частоты
- •1.1.6.2.2. Газопламенная закалка
- •1.1.6.3. Старение
- •1.1.6.4. Обработка стали холодом
- •1.1.6.5. Упрочнение методом пластической деформации
- •1.2. Титан и сплавы на его основе
- •1.3. Тугоплавкие металлы и сплавы на их основе
- •1.4. Цветные металлы и сплавы на их основе
- •1.4.1. Медь и сплавы на ее основе
- •1.4.1.1. Медь
- •1.4.1.2. Латуни
- •1.4.1.3. Бронзы
- •1.4.1.4. Медно-никелевые сплавы
- •1.4.2. Алюминий и сплавы на его основе
- •1.4.2.1. Деформируемые сплавы, не упрочняемые термической обработкой
- •1.4.2.2. Деформируемые сплавы, упрочняемые термической обработкой
- •1.4.2.3. Литейные алюминиевые сплавы
- •1.4.3. Магний и сплавы на его основе
- •1.4.3.1. Деформируемые магниевые сплавы
- •1.4.3.2. Литейные магниевые сплавы
- •1.4.4. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой и цинковой основах
- •1.4.5. Припои
- •1.5. Композиционные материалы
- •1.6. Материалы порошковой металлургии
- •1.6.1. Пористые порошковые материалы
- •1.6.2. Конструкционные порошковые материалы
- •1.6.3. Электротехнические порошковые материалы
- •1.6.4. Магнитные порошковые материалы.
- •1.7. Металлические стекла
- •2.1.2. Минеральные неорганические вяжущие вещества и материалы на их основе
- •2.1.3. Искусственные каменные материалы
- •2.1.3.1. Бетоны
- •2.1.3.2. Силикатные материалы и изделия автоклавного твердения
- •2.1.3.3. Строительные растворы
- •2.2. Каменные плавленые материалы (каменное литье)
- •2.3. Неорганические полимерные материалы
- •2.3.1. Графитовые материалы
- •2.3.2. Асбестовые материалы и изделия
- •2.3.3. Слюдяные материалы
- •2.3.4. Керамические материалы
- •2.3.5. Неорганическое стекло
- •Материалы и изделия из стекла
- •2.3.6. Ситаллы
- •Глава 3. Полимерные пластические материалы (пластмассы)
- •3.1. Состав пластических материалов
- •3.2. Характеристики пластмасс и изделий на их основе
- •3.2.1. Пластмассы с листовым наполнителем
- •3.2.2. Пластмассы с волокнистым наполнителем
- •3.2.3. Пластмассы без наполнителя
- •3.2.4. Пластмассы с газовоздушным наполнителем
- •3.2.5. Стандартизированные изделия из пластмасс
- •Глава 4. Материалы из органических веществ
- •4.1. Лесоматериалы
- •4.1.1. Круглые лесоматериалы
- •4.1.2. Пиломатериалы
- •4.1.3. Древесные материалы и изделия на их основе
- •4.2. Бумажные материалы
- •4.2.1. Бумага и изделия на ее основе
- •4.2.2. Картон и изделия на его основе
- •4.3. Резиновые материалы
- •4.3.1. Состав резиновых материалов
- •4.3.2. Классификация резиновых материалов по назначению и области применения
- •4.4. Органические вяжущие вещества и материалы на их основе
- •4.4.1. Битумные и дегтевые вещества
- •4.4.2. Асфальтовые строительные растворы и бетоны
- •4.4.3. Мастики кровельные и гидроизоляционные
- •4.4.4. Нефтяные эмульсии и пасты
- •Список использованных источников
- •Часть II
- •184200, Мурманская обл., г. Апатиты, ул. Космонавтов, 3
4.4. Органические вяжущие вещества и материалы на их основе
4.4.1. Битумные и дегтевые вещества
Органические вяжущие вещества — природные или искусственные коллоидные системы, в которых диспергированы твердые частицы (d = 18...20 мкм), а дисперсной средой являются смолы и масла. Органическими вяжущими являются битумные и дегтевые вещества.
Вяжущие вещества — строительные материалы, применяемые для изготовления строительных растворов и бетонов. Различают неорганические (цемент, гипс, известь и др.) и органические (битумы, дегти, пеки) минеральные вяжущие вещества.
Органические минеральные вяжущие вещества классифицируются по происхождению и способу образования (производства). Битумные вещества по происхождению могут быть природными (горные смолы) и искусственными. Природные органические минеральные вяжущие вещества, например, горные смолы, возникают в процессе естественной окислительной полимеризации нефти, а искусственные битумные вещества получают в результате переработки нефтяного сырья. Дегтевые вещества (деготь и пек) получают только искусственным путем в процессе нагревания без доступа воздуха твердых видов топлива (угля, сланца, торфа, древесины).
Важнейшие свойства битумов и дегтей: высокая гидрофобность, водонепроницаемость, стойкость против действия кислот, щелочей, агрессивных жидкостей и газов, атмосферостойкость, растворимость в органических растворителях, повышенная деформируемость, способность прочно сцепляться с каменными материалами, деревом, металлом, приобретать пластичность при нагревании и быстро увеличивать вязкость при остывании.
Битумы — смеси углеводородов, в том числе и предельных, и их кислородных, сернистых и азотистых производных. Битумы содержат 70...80 % С; 10... 15 % Н2; 1...5 % 02 и 0...2 % N2.
Вещественный состав битумов включает твердую, аморфную и жидкую части. Твердая часть битумов представлена асфалътенами и парафинами, аморфная — смолами, а жидкая — маслами.
Асфальтепны битума — окисленные углеводороды, диспергированные в виде частиц размером 18...20 мкм, каждая из которых окружена оболочкой с убывающей плотностью от тяжелых смол к маслам. Парафин, содержащийся в нефтяных битумах, представляет собой смесь воскоподобных предельных углеводородов. Он ухудшает свойства битумов, повышает хрупкость при пониженных температурах, поэтому стремятся к тому, чтобы содержание парафина в битумене превышало 5 %.
Молекулярная масса различных вещественных частей битумов составляет: для твердой части — 5000, для аморфной части — 500 ...1000 и для жидкой части — 100. Соответственно молекулярной массе меняются значения плотности, кг/м3: для твердой части — 1300, для аморфной части — 1000, для жидкой части — 800.
В битумах соотношения вещественных частей может колебаться в достаточно широких пределах, что определяет большой диапазон изменения их свойств. Повышение содержания асфальтенов и смол вызывает возрастание твердости, температуры размягчения и хрупкости битума. Наоборот, масла, частично растворяющие смолы, делают битум мягким и легкоплавким. Снижение молекулярной массы масел и смол также повышает пластичность битума.
При нагревании битум переходит в пластическое состояние; в таком состоянии он хорошо прилипает к дереву, кирпичу, бетону, а затвердев, прочно сцепляется с их поверхностью. В воде битум не растворяется.
Для битумов характерно значительное старение под действием солнечного света и кислорода, при этом повышается хрупкость снижается гидрофобность материала.
По консистенции (при температуре 18°С) битумы делят на твердые, полутвердые и жидкие. Марку твердого битума определяют твердостью, температурой размягчения и растяжимостью.
По области применения битумы классифицируют на связующие, гидро- и электроизолирующие, антикоррозионные и антисептиче-ские.
Битумы, применяемые в качестве связующего материала, различают как строительные (ГОСТ 6617—76), кровельные (ГОСТ 9548—74) и дорожные.
Дегтевые вяжущие вещества подразделяются на следующие виды: сырой каменноугольный деготь (ГОСТ 4641—80), отогнанный деготь, пек (ГОСТ 1038—75) и составленные дегти. В состав дегтевых вяжущих входят в основном углеводороды ароматического ряда — производные бензола и их соединения с кислородом, азотом и серой.
Атмосферостойкость дегтевых материалов ниже по сравнению с битумными материалами, т.к. дегтевые вяжущие содержат большее количество непредельных углеводородов, которые подвергаются окислительной полимеризации при контакте с кислородом и водой, воздействии ультрафиолетовых лучей, а следовательно, и стареют быстрее нефтяных битумов. При старении дегтевые материалы становятся хрупкими и теряют водоотталкивающие свойства.
Высокие (по сравнению со значениями для битумов) биостойкость и стойкость против гниения дегтевых вяжущих веществ объясняются большой токсичностью содержащегося в дегтях фенола (карболовой кислоты).
В состав каменноугольного дегтя входят следующие группы веществ:
а) твердые (углистые и неплавкие вещества), нерастворимые в органических растворителях;
б) дегтевые смолы твердые неплавкие (подобные асфальтенам в битуме) и вязкопластичные смолы, растворимые в бензоле и хлороформе;
в) жидкие дегтевые масла, состоящие из жидких углеводородов. Плотность каменноугольных дегтей составляет 960... 1090 кг/м3, пека — 1190... 1300 кг/м3. Температура размягчения пека 50...60°С.
Каменноугольный деготь применяют для пропитки гидроизоляционных материалов и при устройстве дорог, пек — как вяжущее вещество в мастиках для крепления дегтевых гидроизоляционных и облицовочных материалов. При работе с каменноугольными дегтями и пеками следует помнить, что они и их пары токсичны.