
- •Часть II
- •Глава 1. Металлы и сплавы 7
- •Глава 2. Материалы из неорганических 75
- •Глава 3. Полимерные пластические материалы (пластмассы) 97
- •Глава 4. Материалы из органических веществ 107
- •Введение
- •Глава 1. Металлы и сплавы
- •1.1. Железо и сплавы на его основе
- •1.1.1. Система железо – углерод
- •1.1.1.1. Компоненты и фазы железоуглеродистых сплавов
- •1.1.1.2. Процессы при структурообразовании железоуглеродистых сплавов
- •1.1.1.3. Структуры железоуглеродистых сплавов
- •1.1.2. Стали и сплавы
- •1.1.2.1. Влияние углерода и примесей на свойства сталей
- •1.1.2.2. Назначение легирующих элементов
- •1.1.2.3. Классификация сталей
- •1.1.2.4. Маркировка сталей
- •1.1.2.5. Конструкционные стали и сплавы
- •1.1.2.5.1. Конструкционные строительные стали и сплавы
- •1.1.2.5.2. Конструкционные машиностроительные стали и сплавы общего назначения
- •1.1.2.5.3. Конструкционные машиностроительные стали и сплавы специального назначения
- •1.1.2.6. Инструментальные стали и сплавы
- •1.1.2.7. Стали и сплавы с особыми физическими свойствами
- •1.1.2.7.1. Стали и сплавы с заданным температурным коэффициентом линейного расширения
- •1.1.2.7.2. Стали и сплавы с высоким электросопротивлением
- •1.1.2.7.3. Магнитные стали и сплавы
- •1.1.3. Чугуны
- •1.1.3.1. Диаграмма состояния железо – графит
- •1.1.3.2. Процесс графитизации
- •1.1.3.3. Строение, свойства, классификация и маркировка чугунов
- •1.1.3.3.1. Влияние состава чугуна на процесс графитизации
- •1.1.3.3.2. Влияние графита на механические свойства отливок
- •1.1.3.3.3. Серый чугун
- •1.1.3.3.4. Высокопрочный чугун с шаровидным графитом
- •1.1.3.3.5. Ковкий чугун
- •1.1.3.3.5. Отбеленные и другие чугуны
- •1.1.4. Виды термической обработки металлов
- •1.1.4.1. Превращения, протекающие в структуре стали при нагреве и охлаждении
- •2. Превращение аустенита в перлит при медленном охлаждении.
- •3. Превращение аустенита в мартенсит при высоких скоростях охлаждения
- •4. Превращение мартенсита в перлит.
- •1.1.4.2. Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •1.1.4.2.1. Отжиг и нормализация. Назначение и режимы
- •1.1.4.2.2. Закалка
- •1.1.4.3.3. Отпуск
- •1.1.5. Химико-термическая обработка стали
- •1.1.6. Методы упрочнения стали
- •1.1.6.1. Термомеханическая обработка стали
- •1.1.6.2. Поверхностное упрочнение стальных деталей
- •1.1.6.2.1. Закалка токами высокой частоты
- •1.1.6.2.2. Газопламенная закалка
- •1.1.6.3. Старение
- •1.1.6.4. Обработка стали холодом
- •1.1.6.5. Упрочнение методом пластической деформации
- •1.2. Титан и сплавы на его основе
- •1.3. Тугоплавкие металлы и сплавы на их основе
- •1.4. Цветные металлы и сплавы на их основе
- •1.4.1. Медь и сплавы на ее основе
- •1.4.1.1. Медь
- •1.4.1.2. Латуни
- •1.4.1.3. Бронзы
- •1.4.1.4. Медно-никелевые сплавы
- •1.4.2. Алюминий и сплавы на его основе
- •1.4.2.1. Деформируемые сплавы, не упрочняемые термической обработкой
- •1.4.2.2. Деформируемые сплавы, упрочняемые термической обработкой
- •1.4.2.3. Литейные алюминиевые сплавы
- •1.4.3. Магний и сплавы на его основе
- •1.4.3.1. Деформируемые магниевые сплавы
- •1.4.3.2. Литейные магниевые сплавы
- •1.4.4. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой и цинковой основах
- •1.4.5. Припои
- •1.5. Композиционные материалы
- •1.6. Материалы порошковой металлургии
- •1.6.1. Пористые порошковые материалы
- •1.6.2. Конструкционные порошковые материалы
- •1.6.3. Электротехнические порошковые материалы
- •1.6.4. Магнитные порошковые материалы.
- •1.7. Металлические стекла
- •2.1.2. Минеральные неорганические вяжущие вещества и материалы на их основе
- •2.1.3. Искусственные каменные материалы
- •2.1.3.1. Бетоны
- •2.1.3.2. Силикатные материалы и изделия автоклавного твердения
- •2.1.3.3. Строительные растворы
- •2.2. Каменные плавленые материалы (каменное литье)
- •2.3. Неорганические полимерные материалы
- •2.3.1. Графитовые материалы
- •2.3.2. Асбестовые материалы и изделия
- •2.3.3. Слюдяные материалы
- •2.3.4. Керамические материалы
- •2.3.5. Неорганическое стекло
- •Материалы и изделия из стекла
- •2.3.6. Ситаллы
- •Глава 3. Полимерные пластические материалы (пластмассы)
- •3.1. Состав пластических материалов
- •3.2. Характеристики пластмасс и изделий на их основе
- •3.2.1. Пластмассы с листовым наполнителем
- •3.2.2. Пластмассы с волокнистым наполнителем
- •3.2.3. Пластмассы без наполнителя
- •3.2.4. Пластмассы с газовоздушным наполнителем
- •3.2.5. Стандартизированные изделия из пластмасс
- •Глава 4. Материалы из органических веществ
- •4.1. Лесоматериалы
- •4.1.1. Круглые лесоматериалы
- •4.1.2. Пиломатериалы
- •4.1.3. Древесные материалы и изделия на их основе
- •4.2. Бумажные материалы
- •4.2.1. Бумага и изделия на ее основе
- •4.2.2. Картон и изделия на его основе
- •4.3. Резиновые материалы
- •4.3.1. Состав резиновых материалов
- •4.3.2. Классификация резиновых материалов по назначению и области применения
- •4.4. Органические вяжущие вещества и материалы на их основе
- •4.4.1. Битумные и дегтевые вещества
- •4.4.2. Асфальтовые строительные растворы и бетоны
- •4.4.3. Мастики кровельные и гидроизоляционные
- •4.4.4. Нефтяные эмульсии и пасты
- •Список использованных источников
- •Часть II
- •184200, Мурманская обл., г. Апатиты, ул. Космонавтов, 3
1.1. Железо и сплавы на его основе
Железо — Fe, химический элемент VIII группы периодической системы элементов, атомный номер 26, атомная масса 55,847. Блестящий серебристо-серый, пластичный металл. Образует полиморфные модификации. На воздухе железо окисляется — покрывается рыхлой ржавчиной.
Физические свойства железа зависят от содержания примесей. Железо с содержанием примесей 0,01...0,1% имеет следующие свойства: плотность 7840 кг/м3; коэффициент теплопроводности 74,04 Вт/(м.К); удельное электрическое сопротивление 9,7.10-8 Ом/м; температурный коэффициент электрического сопротивления 6,51.10-3 К-1; температурный коэффициент линейного расширения 11,7.10-6 К-1; твердость по Бринеллю 350...450 МПа; модуль Юнга (190...210).103 МПа; предел прочности на разрыв σ = 200... 250 МПа; относительное удлинение δ = 45...55%; ударная вязкость KCU = 220...250 кДж/м2.
Сплавы, в которых суммарное содержание примесей менее 0,1% и углерода менее 0,02 %, называются технически чистым железом, а при содержании менее 0,04% С — техническим железом (армко-железом). Техническое железо имеет высокую магнитную проницаемость (µ=4500 Гн/м) и является электротехническим магнитно-мягким материалом, применяемым для сердечников, полюсных наконечников, электромагнитов, пластин аккумуляторов. Железный порошок в больших количествах применяется при сварке.
Железо — важнейший металл современной техники: на долю сплавов железа с углеродом и другими элементами (железоуглеродистые сплавы) приходится около 95% всей металлической продукции (чугун, сталь, ферросплавы).
Железоуглеродистые сплавы — сплавы Fe (основной компонент) с углеродом. Различают чистые железоуглеродистые сплавы (со следами примесей), получаемые в небольших количествах для исследовательских целей, и технические железоуглеродистые сплавы, содержащие примеси, легирующие элементы и специальные добавки.
1.1.1. Система железо – углерод
Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Производство чугуна и стали по объему превосходит производство всех других металлов вместе взятых более чем в десять раз.
Диаграмма состояния железо – углерод дает основное представление о строении железоуглеродистых сплавов – сталей и чугунов.
Начало изучению диаграммы железо – углерод положил Чернов Д.К. в 1868 году. Чернов впервые указал на существование в стали критических точек и на зависимость их положения от содержания углерода.
Диаграмма железо – углерод должна распространяться от железа до углерода. Железо образует с углеродом химическое соединение: цементит – Fe3C. Каждое устойчивое химическое соединение можно рассматривать как компонент, а диаграмму – по частям. Так как на практике применяют металлические сплавы с содержанием углерода до 5%, то рассматриваем часть диаграммы состояния от железа до химического соединения цементита, содержащего 6.67%углерода.
Диаграмма состояния железо – цементит представлена на рис. 1.1.
1.1.1.1. Компоненты и фазы железоуглеродистых сплавов
Компонентами железоуглеродистых сплавов являются железо, углерод и цементит.
1. Железо – имеет высокую температуру плавления – 1539oС± 5oС.
В твердом состоянии железо может находиться в двух модификациях (рис.1.2). Полиморфные превращения происходят при температурах 911оС и 1392oС. При температуре ниже 911oС существует Feα с объемно-центрированной кубической решеткой. В интервале температур 911…1392oС устойчивым является Feγ с гранецентрированной кубической решеткой. Выше 1392oС железо имеет объемно-центрированную кубическую решетку и называется Feδ или высокотемпературное Feα. Высокотемпературная модификация Feα не представляет собой новой аллотропической формы. Критическую температуру 911oС превращения Feα ↔ Feγ обозначают точкой A3, а температуру 1392oС превращения Feα ↔ Feγ - точкой А4.
Рис. 1.1. Диаграмма состояния железо - цементит
Рис. 1.2. Кривая охлаждения чистого железа
При температуре ниже 768oС железо ферромагнитно, а выше – парамагнитно. Точка Кюри железа 768oС обозначается А2.
Железо технической чистоты обладает невысокой твердостью (80 НВ) и прочностью (предел прочности – σв=250 МПа, предел текучести – σт= 120 МПа) и высокими характеристиками пластичности (относительное удлинение – δ=50%, а относительное сужение – ψ=80%). Свойства могут изменяться в некоторых пределах в зависимости от величины зерна.
Железо характеризуется высоким модулем упругости, наличие которого проявляется и в сплавах на его основе, обеспечивая высокую жесткость деталей из этих сплавов.
Железо со многими элементами образует растворы: с металлами – растворы замещения, с углеродом, азотом и водородом – растворы внедрения.
2. Углерод относится к неметаллам. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристаллической решеткой (температура плавления – 3500оС, плотность – 2,5 г/см3) или в форме алмаза со сложной кубической решеткой с координационным числом равным четырем (температура плавления – 5000оС).
В сплавах железа с углеродом углерод находится в состоянии твердого раствора с железом и в виде химического соединения – цементита (Fe3C), а также в свободном состоянии в виде графита (в серых чугунах).
3. Цементит (Fe3C) – химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода.
Аллотропических превращений не испытывает. Кристаллическая решетка цементита состоит из ряда октаэдров, оси которых наклонены друг к другу (рис.1.3).
Рис. 1.3. Кристаллическая решетка цементита
Температура плавления цементита точно не установлена (1250, 1550oС). При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 217oС.
Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность. Такие свойства являются следствием сложного строения кристаллической решетки.
Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов: азотом, кислородом; атомы железа – металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.
Цементит – соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов.
В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит.
1. Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.
2. Феррит (Ф) Feα(C) – твердый раствор внедрения углерода в α-железо.
Феррит имеет переменную предельную растворимость углерода: минимальную – 0,006 % при комнатной температуре (точка Q), максимальную – 0,02 % при температуре 727oС (точка P). Углерод располагается в дефектах решетки.
При температуре выше 1392oС существует высокотемпературный феррит (δ) (Feδ (C), с предельной растворимостью углерода 0,1 % при температуре 1499oС (точка J)
Свойства феррита близки к свойствам железа. Он мягок (твердость – 130 НВ, предел прочности –σв=300 МПа) и пластичен (относительное удлинение – δ=30%), магнитен до 768oС.
3. Аустенит (А) Feγ(С) – твердый раствор внедрения углерода в γ-железо.
Углерод занимает место в центре гранецентрированной кубической ячейки (рис.1.4).
Рис. 1.4. Аустенит в углеродистой стали
Аустенит имеет переменную предельную растворимость углерода: минимальную – 0,8 % при температуре 727oС (точка S), максимальную – 2,14 % при температуре 1147oС (точка Е).
Аустенит имеет твердость 200…250 НВ, пластичен (относительное удлинение –δ=40…50%), парамагнитен.
При растворении в аустените других элементов могут изменяться свойства и температурные границы существования.
4. Цементит – характеристика дана выше.
В железоуглеродистых сплавах присутствуют фазы: цементит первичный (ЦI), цементит вторичный (ЦII), цементит третичный (ЦIII). Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.