
- •Часть II
- •Глава 1. Металлы и сплавы 7
- •Глава 2. Материалы из неорганических 75
- •Глава 3. Полимерные пластические материалы (пластмассы) 97
- •Глава 4. Материалы из органических веществ 107
- •Введение
- •Глава 1. Металлы и сплавы
- •1.1. Железо и сплавы на его основе
- •1.1.1. Система железо – углерод
- •1.1.1.1. Компоненты и фазы железоуглеродистых сплавов
- •1.1.1.2. Процессы при структурообразовании железоуглеродистых сплавов
- •1.1.1.3. Структуры железоуглеродистых сплавов
- •1.1.2. Стали и сплавы
- •1.1.2.1. Влияние углерода и примесей на свойства сталей
- •1.1.2.2. Назначение легирующих элементов
- •1.1.2.3. Классификация сталей
- •1.1.2.4. Маркировка сталей
- •1.1.2.5. Конструкционные стали и сплавы
- •1.1.2.5.1. Конструкционные строительные стали и сплавы
- •1.1.2.5.2. Конструкционные машиностроительные стали и сплавы общего назначения
- •1.1.2.5.3. Конструкционные машиностроительные стали и сплавы специального назначения
- •1.1.2.6. Инструментальные стали и сплавы
- •1.1.2.7. Стали и сплавы с особыми физическими свойствами
- •1.1.2.7.1. Стали и сплавы с заданным температурным коэффициентом линейного расширения
- •1.1.2.7.2. Стали и сплавы с высоким электросопротивлением
- •1.1.2.7.3. Магнитные стали и сплавы
- •1.1.3. Чугуны
- •1.1.3.1. Диаграмма состояния железо – графит
- •1.1.3.2. Процесс графитизации
- •1.1.3.3. Строение, свойства, классификация и маркировка чугунов
- •1.1.3.3.1. Влияние состава чугуна на процесс графитизации
- •1.1.3.3.2. Влияние графита на механические свойства отливок
- •1.1.3.3.3. Серый чугун
- •1.1.3.3.4. Высокопрочный чугун с шаровидным графитом
- •1.1.3.3.5. Ковкий чугун
- •1.1.3.3.5. Отбеленные и другие чугуны
- •1.1.4. Виды термической обработки металлов
- •1.1.4.1. Превращения, протекающие в структуре стали при нагреве и охлаждении
- •2. Превращение аустенита в перлит при медленном охлаждении.
- •3. Превращение аустенита в мартенсит при высоких скоростях охлаждения
- •4. Превращение мартенсита в перлит.
- •1.1.4.2. Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •1.1.4.2.1. Отжиг и нормализация. Назначение и режимы
- •1.1.4.2.2. Закалка
- •1.1.4.3.3. Отпуск
- •1.1.5. Химико-термическая обработка стали
- •1.1.6. Методы упрочнения стали
- •1.1.6.1. Термомеханическая обработка стали
- •1.1.6.2. Поверхностное упрочнение стальных деталей
- •1.1.6.2.1. Закалка токами высокой частоты
- •1.1.6.2.2. Газопламенная закалка
- •1.1.6.3. Старение
- •1.1.6.4. Обработка стали холодом
- •1.1.6.5. Упрочнение методом пластической деформации
- •1.2. Титан и сплавы на его основе
- •1.3. Тугоплавкие металлы и сплавы на их основе
- •1.4. Цветные металлы и сплавы на их основе
- •1.4.1. Медь и сплавы на ее основе
- •1.4.1.1. Медь
- •1.4.1.2. Латуни
- •1.4.1.3. Бронзы
- •1.4.1.4. Медно-никелевые сплавы
- •1.4.2. Алюминий и сплавы на его основе
- •1.4.2.1. Деформируемые сплавы, не упрочняемые термической обработкой
- •1.4.2.2. Деформируемые сплавы, упрочняемые термической обработкой
- •1.4.2.3. Литейные алюминиевые сплавы
- •1.4.3. Магний и сплавы на его основе
- •1.4.3.1. Деформируемые магниевые сплавы
- •1.4.3.2. Литейные магниевые сплавы
- •1.4.4. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой и цинковой основах
- •1.4.5. Припои
- •1.5. Композиционные материалы
- •1.6. Материалы порошковой металлургии
- •1.6.1. Пористые порошковые материалы
- •1.6.2. Конструкционные порошковые материалы
- •1.6.3. Электротехнические порошковые материалы
- •1.6.4. Магнитные порошковые материалы.
- •1.7. Металлические стекла
- •2.1.2. Минеральные неорганические вяжущие вещества и материалы на их основе
- •2.1.3. Искусственные каменные материалы
- •2.1.3.1. Бетоны
- •2.1.3.2. Силикатные материалы и изделия автоклавного твердения
- •2.1.3.3. Строительные растворы
- •2.2. Каменные плавленые материалы (каменное литье)
- •2.3. Неорганические полимерные материалы
- •2.3.1. Графитовые материалы
- •2.3.2. Асбестовые материалы и изделия
- •2.3.3. Слюдяные материалы
- •2.3.4. Керамические материалы
- •2.3.5. Неорганическое стекло
- •Материалы и изделия из стекла
- •2.3.6. Ситаллы
- •Глава 3. Полимерные пластические материалы (пластмассы)
- •3.1. Состав пластических материалов
- •3.2. Характеристики пластмасс и изделий на их основе
- •3.2.1. Пластмассы с листовым наполнителем
- •3.2.2. Пластмассы с волокнистым наполнителем
- •3.2.3. Пластмассы без наполнителя
- •3.2.4. Пластмассы с газовоздушным наполнителем
- •3.2.5. Стандартизированные изделия из пластмасс
- •Глава 4. Материалы из органических веществ
- •4.1. Лесоматериалы
- •4.1.1. Круглые лесоматериалы
- •4.1.2. Пиломатериалы
- •4.1.3. Древесные материалы и изделия на их основе
- •4.2. Бумажные материалы
- •4.2.1. Бумага и изделия на ее основе
- •4.2.2. Картон и изделия на его основе
- •4.3. Резиновые материалы
- •4.3.1. Состав резиновых материалов
- •4.3.2. Классификация резиновых материалов по назначению и области применения
- •4.4. Органические вяжущие вещества и материалы на их основе
- •4.4.1. Битумные и дегтевые вещества
- •4.4.2. Асфальтовые строительные растворы и бетоны
- •4.4.3. Мастики кровельные и гидроизоляционные
- •4.4.4. Нефтяные эмульсии и пасты
- •Список использованных источников
- •Часть II
- •184200, Мурманская обл., г. Апатиты, ул. Космонавтов, 3
1.4. Цветные металлы и сплавы на их основе
1.4.1. Медь и сплавы на ее основе
1.4.1.1. Медь
Медь - химический элемент I группы периодической системы, имеет гранецентрированную кубическую решетку. Плотность меди 8,94 г/см3, температура плавления 1083oС.
Характерным свойством меди является ее высокая электропроводность, поэтому она находит широкое применение в электротехнике. Технически чистая медь маркируется: М00 (99,99 % Cu), М0 (99,95 % Cu), М2, М3 и М4 (99 % Cu).
Механические свойства меди относительно низкие: предел прочности составляет 150…200 МПа, относительное удлинение – 15…25 %. Поэтому в качестве конструкционного материала медь применяется редко. Повышение механических свойств достигается созданием различных сплавов на основе меди.
Различают две группы медных сплавов: латуни – сплавы меди с цинком, бронзы – сплавы меди с другими (кроме цинка) элементами.
1.4.1.2. Латуни
Латунями называют двойные и многокомпонентные (добавки Al, Sn, Fe, Mn, Ni, Si, Pb и др. элементы в сумме до 10%) сплавы на основе меди, в которых главной добавкой является цинк, причем содержание цинка может меняться до 49%. Повышение содержания цинка приводит к увеличению предела прочности до 450 МПа. Максимальная пластичность имеет место при содержании цинка около 37 %.
При сплавлении меди с цинком образуется ряд твердых растворов α, β, γ, ε (рис.1.29).
Рис.1.29. Диаграмма
состояния медь – цинк
Из диаграммы состояния медь – цинк видно, что в зависимости от состава имеются однофазные латуни, состоящие из α – твердого раствора, и двухфазные (α + β) – латуни.
По способу изготовления изделий различают латуни деформируемые и литейные.
Деформируемые латуни маркируются буквой Л, за которой следует число, показывающее содержание меди в процентах, например в латуни Л62 содержится 62 % меди и 38 % цинка. Если кроме меди и цинка, имеются другие элементы, то ставятся их начальные буквы ( О – олово, С – свинец, Ж – железо, Ф – фосфор, Мц – марганец, А – алюминий, Ц – цинк). Количество этих элементов обозначается соответствующими цифрами после числа, показывающего содержание меди, например, сплав ЛАЖ60-1-1 содержит 60 % меди, 1 % алюминия, 1 % железа и 38 % цинка.
Однофазные α-латуни используются для изготовления деталей деформированием в холодном состоянии. Изготавливают ленты, гильзы патронов, радиаторные трубки, проволоку.
Для изготовления деталей деформированием при температуре выше 500oС используют (α+ β)–латуни. Из двухфазных латуней изготавливают листы, прутки и другие заготовки, из которых последующей механической обработкой изготавливают детали. Обрабатываемость резанием улучшается присадкой в состав латуни свинца, например, латунь марки ЛС59-1, которую называют “автоматной латунью”.
Латуни имеют хорошую коррозионную стойкость, которую можно повысить дополнительно присадкой олова. Латунь ЛО70-1 стойка против коррозии в морской воде и называется “морской латунью“.
Добавка никеля и железа повышает механическую прочность до 550 МПа.
Литейные латуни также маркируются буквой Л, После буквенного обозначения основного легирующего элемента (цинк) и каждого последующего ставится цифра, указывающая его усредненное содержание в сплаве. Например, латунь ЛЦ23А6Ж3Мц2 содержит 23 % цинка, 6 % алюминия, 3 % железа, 2 % марганца. Наилучшей жидкотекучестью обладает латунь марки ЛЦ16К4. К литейным латуням относятся латуни типа ЛС, ЛК, ЛА, ЛАЖ, ЛАЖМц. Литейные латуни не склонны к ликвации, имеют сосредоточенную усадку, отливки получаются с высокой плотностью. Латуни являются хорошим материалом для конструкций, работающих при отрицательных температурах.