
- •Часть I
- •В.Н. Колосов,
- •В.И. Иваненко,
- •Глава 1. Металлы 10
- •Глава 4. Свойства материалов 55
- •Введение
- •Основные понятия
- •Общие требования, предъявляемые к материалам в зависимости от условий использования, применения или эксплуатации
- •Системный подход к изучению строения, структуры и свойств материалов
- •Глава 1. Металлы
- •1.1. Особенности атомно-кристаллического строения металлов
- •1.2. Понятие об изотропии и анизотропии
- •1.3. Аллотропия, или полиморфные превращения
- •1.4. Магнитные превращения
- •1.5. Строение реальных металлов. Дефекты кристаллического строения
- •1.6. Кристаллизации металлов
- •1.6.1. Механизм и закономерности кристаллизации металлов
- •1.6.2. Условия получения мелкозернистой структуры
- •1.6.3. Строение металлического слитка
- •1.7. Методы исследования металлов
- •1.7.1. Определение химического состава
- •1.7.2. Изучение структуры
- •1.7.3. Физические методы исследования
- •Глава 2. Металлические сплавы
- •2.1. Особенности строения, кристаллизации и свойств сплавов
- •2.2. Классификация сплавов твердых растворов
- •2.3. Кристаллизация сплавов
- •2.4. Диаграммы состояния двухкомпонентных сплавов
- •2.4.1. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (сплавы твердые растворы с неограниченной растворимостью)
- •2.4.2. Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии (механические смеси)
- •2.4.3. Диаграммы состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии с эвтектическим превращением
- •2.4.4. Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии с перитектическим превращением
- •2.4.5. Диаграмма состояния сплавов, компоненты которых образуют химические соединения
- •2.4.6. Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)
- •2.4.7. Диаграмма состояния сплавов с полиморфным превращением одного из компонентов
- •2.4.8. Диаграмма состояния сплавов с полиморфными превращениями компонентов и эвтектоидным превращением
- •2.4.9. Связь между свойствами сплавов и типом диаграммы состояния
- •Глава 3. Структура неметаллических материалов
- •3.1. Строение полимеров
- •3.1.1. Классификации полимеров
- •3.1.2. Надмолекулярная структура полимеров
- •3.1.2.1. Структура аморфных полимеров
- •3.1.2.2. Структура кристаллических полимеров
- •3.1.3. Физические состояния аморфного полимера
- •3.1.4. Гибкость макромолекул
- •3.2. Строение стекла
- •3.3. Строение керамики
- •Глава 4. Свойства материалов
- •4.1. Физические свойства
- •4.2. Механические свойства
- •4.2.1. Физическая природа деформации металлов
- •4.2.2. Дислокационный механизм пластической деформации
- •4.2.3. Разрушение металлов
- •4.2.4. Механические свойства, определяемые при статических нагрузках
- •4.2.4.1. Испытания на растяжение
- •4.2.4.2. Испытания на изгиб
- •4.2.4.3. Испытания на твердость
- •4.2.5. Механические свойства, определяемые при динамических нагрузках
- •1 − Образец; 2 − маятник; 3 − шкала; 4 − стрелка шкалы; 5 − тормоз
- •4.2.6. Механические свойства, определяемые при переменных (циклических) нагрузках
- •4.3. Электрические свойства
- •4.3.1. Общие сведения
- •4.3.2. Основные характеристики диэлектрических материалов
- •4.4. Магнитные свойства
- •4.4.1. Общие сведения
- •4.4.2. Основные магнитные характеристики материалов
- •4.5. Технологические свойства
- •4.6. Эксплуатационные свойства
- •4.7. Свойства веществ и материалов в основных физико-химических процессах
- •4.7.1. Старение
- •4.7.2. Изнашивание
- •4.7.3. Диффузия
- •4.7.4. Коррозия
- •4.8. Способы воздействия на свойства веществ и материалов
- •4.8.1. Механическая обработка
- •4.8.1.1. Общие сведения
- •4.8.1.2. Деформация поликристаллов
- •4.8.1.3. Деформация полимеров
- •4.8.1.4. Деформация аморфных сплавов
- •4.8.2. Термическая обработка
- •4.8.2.1. Отжиг
- •4.8.2.2. Закалка
- •4.8.2.3. Отпуск и искусственное старение
- •4.8.3. Термомеханическая обработка
- •4.8.3.1. Тепломеханическая обработка металлов и сплавов
- •4.8.3.2. Термомеханическая обработка аморфных сплавов
- •4.8.4. Химико-термическая обработка
- •Список использованных источников
- •Часть I
- •184200, Мурманская обл., г. Апатиты, ул. Космонавтов, 3.
2.4.5. Диаграмма состояния сплавов, компоненты которых образуют химические соединения
Диаграмма состояния сплавов представлена на рис. 2.14.
|
Рис. 2.14. Диаграмма состояния сплавов, компоненты которых образуют химические соединения |
Диаграмма состояния сложная, состоит из нескольких простых диаграмм. Число компонентов и количество диаграмм зависит от того, сколько химических соединений образуют основные компоненты системы.
Число фаз и вид простых диаграмм определяются характером взаимодействия между компонентами. На рис. 2.14 по линии образования химического соединения AmBn диаграмма состояния сплавов делится на две диаграммы, каждая из которых имеет две эвтектики:
Эвт1 (кр. А + кр. AmBn) и Эвт2 (кр. В + кр. AmBn).
2.4.6. Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)
По внешнему виду диаграмма состояния (рис. 2.15) похожа на диаграмму состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии. Отличие в том, что линии предельной растворимости компонентов не перпендикулярны оси концентрации. Появляются области, в которых из однородных твердых растворов при понижении температуры выделяются вторичные фазы.
На диаграмме:
• df − линия переменной предельной растворимости компонента В в компоненте А;
• ек − линия переменной предельной растворимости компонента А в компоненте В.
Кривая охлаждения сплава I представлена на рис. 2.15б.
Процесс кристаллизации сплава I: до точки 1 охлаждается сплав в жидком состоянии. При температуре, соответствующей точке 1, начинают образовываться центры кристаллизации твердого раствора α. На участке 1-2 идет процесс кристаллизации, протекающий при понижающейся температуре. При достижении температуры соответствующей точке 2, сплав затвердевает, при дальнейшем понижении температуры охлаждается сплав в твердом состоянии, состоящий из однородных кристаллов твердого раствора α. При достижении температуры, соответствующей точке 3, твердый раствор α оказывается насыщенным компонентом В, при более низких температурах растворимость второго компонента уменьшается, поэтому из α-раствора начинает выделяться избыточный компонент в виде кристаллов βII. За точкой 3 сплав состоит из двух фаз: кристаллов твердого раствора α и вторичных кристаллов твердого раствора βII.
Рис. 2.15. Диаграмма состояния сплавов, испытывающих фазовые превращения
в твердом состоянии (а), и кривая охлаждения сплава (б)
2.4.7. Диаграмма состояния сплавов с полиморфным превращением одного из компонентов
Большой практический интерес представляют сплавы, у которых один из компонентов или оба имеют полиморфные превращения. В этих сплавах в результате термической обработки можно получать метастабильные состояния структуры с новыми свойствами.
Диаграмма состояния сплавов с полиморфным превращением одного из компонентов представлена на рис. 2.16. Сплав I после полного затвердевания при температуре точки 2 в твердом состоянии в интервале температур точек 3 и 4 изменяет кристаллическую структуру. Это вызвано полиморфизмом компонента А, который до температуры точки А1 имеет тип кристаллической решетки А, а при температуре более высокой — А. Причем кристаллическая решетка А такая же, как у компонента В, в результате чего между ними образуется непрерывный ряд твердых растворов.
|
Рис. 2.16. Диаграмма состояния сплавов с полиморфным превращением одного из компонентов |
В сплавах, составы которых лежат между точками ха и xb, превращение а при охлаждении не заканчивается, и сплав остается двухфазным ( + ). Сплавы, составы которых лежат правее точки xb, в твердом состоянии превращений не имеют, структура у них однофазная − твёрдый раствор.