
- •Долгота
- •Параметры земного эллипсоида Эллипсоид - тело, полученное вращением эллипса вокруг его малой оси.
- •Референц-эллипсоид
- •Основные референц-эллипсоиды и их параметры
- •Поправка компаса.
- •Превращение свободного гироскопа в гирокомпас.
- •11. Циркуляция судна.
- •Скоростное проседание
- •Расчет точности места судна
- •Среднеквадратические погрешности (mU) пеленга (из таблицы 4.3. «мт-2000»)
- •Опознавание береговой черты
- •1. Способ веера пеленгов и расстояний.
- •2. Способ траверзных расстояний (рис. 21.2).
- •Определение места судна по расстояниям до нескольких ориентиров
- •1. Расстояния измеряются до точечных ориентиров (рис. 21.3).
- •2. Расстояния измеряются до участка береговой черты с плавными очертаниями и «точечного» ориентира (рис. 21.4).
- •3. Расстояния измеряются до участков береговой черты с плавными очертаниями (рис. 21.5).
- •Определение места судна по радиолокационному пеленгу и расстоянию до одного ориентира
- •Определение места судна по пеленгу и расстоянию до одного ориентира
- •17. Плавание в узкостях и шхерах Плавание в узкостях
- •Плавание в шхерах
- •Сетки линий положения
- •20. Определение места судна по разновременным наблюдениям Солнца.
- •21.Определение поправки компаса по Полярной (Метод высот и моментов).
- •23.Плавание по дуге большого круга. Способы расчета
- •24. Система разделения движения:
- •25. Средства навигационного оборудования (сно)
- •1. Береговые сно
- •2. Плавучие средства навигационного оборудования
- •3. Системы ограждения навигационных опасностей
- •27. Корректура Адмиралтейских карт
- •1. Содержание anm:
- •2. Содержание annual summary of admiralty notices to mariners (ежегодный свод адмиралтейских извещений мореплавателям)
- •3. Содержание cumulative list of admiralty notices to mariners нумерник (Сборный Лист) адмиралтейских извещений мореплавателям.
- •4. Порядок корректуры навигационных карт
- •6. Порядок корректуры лоций (sailing directions)
- •29. Международная служба информации по безопасности на море
- •29. Приливо - Отливные течения
- •34.2. Основные элементы прилива
- •34.3. Неравенства приливов Суточные (тропические) неравенства
- •Полумесячные (фазовые) неравенства
- •Параллактические (месячные) неравенства
- •34.6. График прилива
- •Информация о приливо-отливных течениях (см. Мнк № 22300)
- •34.9. Атласы приливо-отливных явлений
- •30. Судовождение в морях с приливами
- •32.Способы определения поправки магнитного компаса и девиации магнитных компасов.
- •33. Плаванье в зоне действия системы управления движением (судс).
- •34.Толкование colreg/мппсс- 72 (очень близко к тексту, желательно наизусть).
- •35. Постановка на якорь. Расчет радиуса безопасной якорной стоянки. Выбор места якорной стоянки
- •Силы, действующие на судно, стоящее на якоре
- •Постановка судна на один якорь
- •Постановка судна на два якоря
- •Поведение судна на якоре
- •Стоянка на якоре
- •36. Команды рулевому на англ.Языке.
- •37. Морская терминология на английском языке согласно должностным обязанностям и заведованию. Понимание vms на англ.Языке.
- •39. Вопросы плавучести и остойчивости судна. Диаграммы статической и динамической остойчивости. Метацетрическая высота. Критерии остойчивости.
- •Виды остойчивости
- •Начальная поперечная остойчивость
- •Метацентр
- •Характеристики остойчивости
- •Остойчивость формы и остойчивость веса
- •Меры начальной остойчивости
- •Начальная продольная остойчивость
- •Диаграмма остойчивости
- •Основные элементы диаграммы остойчивости
- •Виды диаграммы остойчивости
- •Факторы, влияющие на изменение остойчивости Перемещение грузов
- •Прием и снятие грузов
- •Свободные поверхности
- •Динамическая остойчивость
- •4) Требования регистра к остойчивости морских судов. Нормы остойчивости
- •Imo критерии остойчивости
- •40. Решение задач по расхождению судов на маневренном планшете. Векторный треуголник. Закономерности изменения лоДов.
- •1. Истинная прокладка
- •2. Относительная прокладка
- •4. Выбор и обоснование маневра для расхождения в заданной дистанции
- •5. Учет инерции судна.
- •1. Способ относительного промежуточного курса.
- •2. Способ условной упрежденной точки.
- •3. Способ введения поправки в Dзад.
- •1. Способ построения кривой олод.
- •2. Способ введения поправки в Dзад.
- •3. Способ условной упрежденной точки (рис. 7)
- •4. Способ средней скорости.
- •18. 13.1.3. Определение места судна способом «крюйс-пеленг»
- •Определение места судна при дрейфе и на течении
- •Меридиональные части (выдержка)
- •12. Аналитическое счисление
- •13. Навигационныу параметры.
- •15. Определение места судна по двум горизонтальным углам трех береговых ориентиров
- •13.2.1. Сущность способа
- •13.2.2. Способы нанесения обсервованного места судна на путевую карту
- •13.2.3. Случай неопределенности
- •Практическое выполнение способа определения места судна по двум горизонтальным углам
- •I способ. Одновременное измерение горизонтальных углов двумя наблюдателями.
- •II способ. Измерение углов одним наблюдателем.
- •34.Информация о приливо-отливных течениях
- •34.9. Атласы приливо-отливных явлений
- •19. Комбинированные способы определения места судна
Остойчивость формы и остойчивость веса
Подставляя в метацентрическую формулу поперечной остойчивости h = r − а, и заменяя r его значением по формуле (1), а также Р = γV получаем:
mθ = P(r − a) sinθ = Pr sinθ − Pa sinθ
и окончательно
,
(4)
Первый член в выражении (4) в основном определяется величиной и формой площади ватерлинии и называется поэтому моментом остойчивости формы: mф = γ Ix sin θ. Момент остойчивости формы всегда является положительной величиной и стремится вернуть наклоненное судно в исходное положение.
Второй член в формуле (4) зависит от веса P и возвышения центра тяжести над центром величины a и называется моментом остойчивости веса mв = − Pa sin θ. Момент остойчивости веса в случае высокого расположения центра тяжести (zg > zс) является величиной отрицательной, и действует в сторону наклонения.
Физическая сущность момента остойчивости формы и момента остойчивости веса раскрывается при помощи чертежа, на котором показана система сил, действующих на наклоненное судно. С накрененного борта в воду входит дополнительный объем v1, придающий дополнительную «выталкивающую» силу плавучести. С противоположного борта из воды выходит объем v2, стремящийся погрузить этот борт. Оба они работают на спрямление.
Погруженный объем V1, отвечающий посадке по ватерлинию B1Л1, представляется в виде алгебраической суммы трех объемов
Vl = V + v1 − v2,
где: V — погруженный объем при исходной посадке по ватерлинию ВЛ;
v1 — вошедший в воду, а v2 — вышедший из воды клиновидные объёмы;
В соответствии с этим и силу плавучести γV1 можно заменить тремя составляющими силами γV, γv1, γv2, приложенными в центрах величины объемов V, v1, v2. Вследствие равнообъёмности наклонений эти три силы совместно с силой тяжести Р образуют две пары Р − γV и γv1 − γv2, которые эквивалентны паре Р − γV1 . Восстанавливающий момент равен сумме моментов этих двух пар
mθ = m (γv1, γv2) + m (γV, P).
Момент сил плавучести клиновидных объемов v1 и v2 является моментом остойчивости формы. Чем шире корпус в районе ватерлинии, тем больше клиновидные объемы и их плечи при наклонениях в поперечной плоскости, тем больше момент остойчивости формы. Величина момента остойчивости формы определяется в основном моментом инерции площади ватерлинии относительно продольной оси Ix. А момент инерции Ix пропорционален квадрату ширины площади ватерлинии.
Момент пары сил Р и γV является моментом остойчивости веса. Он обусловлен несовпадением точек приложения сил тяжести и плавучести (G и С) в исходном положении равновесия, вследствие чего при наклонениях линии действия этих сил расходятся, и силы Р и γV образуют пару.
Меры начальной остойчивости
Для практики недостаточно простой качественной оценки — остойчиво судно или неостойчиво, так как степень остойчивости может быть различной, в зависимости от размеров, нагрузки и величины наклонения. Величины, дающие возможность количественно оценить начальную остойчивость, называются мерами начальной остойчивости.
Использование восстанавливающего момента в качестве меры начальной остойчивости неудобно, так как он зависит от угла наклонения. При бесконечно малых углах крена восстанавливающий момент mθ также стремится к нулю и по нему невозможно оценить остойчивость.
В связи с этим за меру начальной остойчивости принимается не сам восстанавливающий момент, а его первая производная по углу наклонения. Эта производная характеризует интенсивность нарастания восстанавливающего момента при наклонениях и называется коэффициентом остойчивости. При наклонениях в поперечной плоскости коэффициент поперечной остойчивости равен первой производной от восстанавливающего момента
, и при крене равном нулю Kθ = Ph.
Коэффициент остойчивости дает абсолютную оценку остойчивости, то есть непосредственно показывает то сопротивление, которое оказывает судно отклоняющим его от положения равновесия силам. Зависимость коэффициента остойчивости от веса судна ограничивает его использование, поскольку чем больше водоизмещение, тем больше коэффициент остойчивости. Для оценки степени совершенства судна с точки зрения его начальной остойчивости используется относительная мера остойчивости — метацентрическая высота, которую можно рассматривать как коэффициент остойчивости, приходящийся на тонну водоизмещения:
Благодаря своему простому геометрическому смыслу метацентрическая высота наиболее часто используется в качестве меры начальной остойчивости, хотя следует иметь в виду, что коэффициент остойчивости дает наиболее полную оценку этого мореходного качества.