Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВВЕДЕНИЕ В НОВУЮ ЭЛЕКТРОДИНАМИКУ (NXPowerLite).doc
Скачиваний:
7
Добавлен:
01.05.2025
Размер:
3.22 Mб
Скачать
  1. Автономные источники энергии

Электромотор-генератор МГ-1 (рис. 43) получал энергию из сети. Это исключало возможность проверки реальной величины импульсной мощности на его привод. Такая возможность появляется при питании его от первичного источника питания с явным ограничением величины его электрической энергии. Этим свойством обладают аккумуляторы, поэтому вторая модель электромотора – генератора МГ-2 (рис. 55), не имеющего постороннего привода, была сделана для подключения к аккумулятору [5], [6].

Сложности изготовления первых моделей новых изделий известны. Не всегда удаётся сразу точно рассчитать проектные параметры, закладываемые в конструкцию такого изделия. Возникающие несоответствия быстро исправляются после первых испытаний таких изделий и экспериментальный цех немедленно изготовляет следующий образец с исправленными погрешностями. Мы такой возможности лишены. Экспериментальный образец изготовляется в единственном экземпляре, а недостаток финансовых средств лишает нас возможности быстрого исправления допущенных погрешностей путём изготовления следующего экспериментального образца такого устройства. Поэтому мы представляем результаты испытаний первого образца электромотора – генератора МГ-2 с теми погрешностями, которые были допущены при его изготовлении (рис. 55).

Рис. 55. Электромотор – генератор МГ-2

Главная из них – низкая амплитуда импульсов ЭДС индукции в обмотке статора, которая исключает возможность использовать эти импульсы для зарядки 12-ти вольтового аккумулятора, питающего МГ-2 (рис. 55). Величина амплитуды импульса ЭДС индукции в обмотке статора оказалась около 8 Вольт, что исключило возможность использовать этот импульс для зарядки 12-ти вольтового аккумулятора.

Главное достоинство МГ-2 – полное отсутствие электроники в системе его питания. Все функции управления этим процессом принадлежат щёткам и коллектору, которые позволяют менять ступенчато обороты ротора в интервале от 1000 до 3600 об./мин. Ротор массой 2,33 кг можно приводить во вращение источником питания с напряжением от 3 до 36 Вольт. Суть небольшого дополнения в системе питания МГ-2 в том, что импульсы ЭДС самоиндукции, рождающиеся в обмотке возбуждения ротора, возвращаются в конденсаторы блока питания и их действие прослеживается на осциллограммах, снятых с клемм аккумуляторов, питающих МГ-2 (рис. 56) [3], [4].

Рис. 56. Осциллограмма напряжения и тока на клеммах ротора МГ-2

На рис. 56 видно, что после отключения подачи напряжения в обмотку возбуждения ротора (амплитуда тока уменьшается до нуля), возникающий импульс ЭДС самоиндукции в его обмотке возвращается в конденсаторы блока питания и на клеммах аккумулятора появляются импульсы Р, Р, Р, …. Р. напряжения подзаряжающие аккумулятор, и соответствующие импульсы тока k, k, k,….k, полярность которых противоположна полярности импульсов тока с амплитудами , разряжающими аккумулятор импульсной энергией привода ротора (рис. 56). Полученный экспериментальный результат убедительно доказывает возможность рекуперации электрической энергии [3], [6]. В следующей модели импульсы ЭДС самоиндукции ротора будут направлены на подзарядку аккумуляторов в режиме их зарядки, а не в режиме подачи напряжения в обмотку возбуждения ротора.

Наиболее приемлемый выход из невозможности использования импульса ЭДС индукции статора для зарядки аккумуляторов – подключение МГ-2 к двум 6-ти вольтовым аккумуляторам, соединённым последовательно и образующим 12-ти вольтовый источник энергии. Так как один и тот же аккумулятор нежелательно использовать в режиме разрядки и зарядки одновременно, то нужна вторая пара таких же аккумуляторов. Для того чтобы одна пара таких аккумуляторов питала МГ-2, а вторая в этот же момент заряжалась импульсами ЭДС индукции статора, потребовалась схема их подключения (рис. 57), которая позволяла использовать их в режиме питания МГ-2, соединёнными последовательно, а в режиме зарядки – соединёнными параллельно. В этом случае достаточно амплитуды импульсов ЭДС индукции статора, равной 8 Вольт, для зарядки двух 6-ти вольтовых аккумуляторов, соединённых параллельно. На рис. 57 представлена электрическая схема, позволившая реализовать описанное, при ручном переключении режима разрядки аккумулятора, питающего МГ-2 в режим его зарядки.

Рис. 57. Электрическая схема питания МГ-2 в режимах разрядки и зарядки аккумуляторов

Масса ротора МГ-2 составляет 2,33 кг. Его обмотка возбуждения подключалась к двум 6-ти вольтовым мотоциклетным аккумуляторам 6МТС-9, соединённым последовательно. Два других таких аккумулятора, соединённых на момент зарядки параллельно, подключались к импульсам ЭДС индукции статора. К импульсам ЭДС самоиндукции статора подключалась ячейка электролизёра (рис. 58).

Рис. 58. Фото МГ-2 + 2 аккумулятора 6МТС-9 + ячейка электролизёра

Процесс контрольных испытаний длился 3 часа 10 минут при 1800 оборотах ротора в минуту. Электролизёр производил 2,70 литра смеси водорода и кислорода в час. Аккумуляторы переключались с режима разрядки (питания МГ-2) на режим зарядки вручную через пол часа. За 3 часа 10 минут напряжение на клеммах каждой пары аккумуляторов уменьшилось с 12,28В до 12,00В. Импульсы ЭДС индукции статора не дозаряжали каждую пару 6-ти вольтовых аккумуляторов на 0,10 Вольта в час, а каждый из них в отдельности, на 0,05 Вольта в час.

Для проверки величины мощности, необходимой для поддержания постоянного напряжения на клеммах аккумуляторов был проведён дополнительный эксперимент. К клеммам аккумуляторов, находившимся в режиме зарядки, подключалось зарядное устройство, включённое в обычную электрическую сеть. Измерения показали, что дополнительное зарядное устройство забирало из сети на холостом ходу 10 Ватт, а после подключения заряжаемых аккумуляторов мощность увеличивалась на 4-5 Ватт. Диск счётчика электроэнергии не реагировал на такую нагрузку и не вращался.

Из этого следует, что увеличение витков обмотки статора способно обеспечить работу МГ-2 в автономном режиме без посторонних источников энергии. В результате длительность автономной работы такого источника энергии в режиме, так называемого «вечного» двигателя будет ограничена только сроком службы аккумуляторов.

Все вопросы о коэффициенте полезного действия МГ-2 теряют смысл и понятие электротехнический закон сохранения энергии, согласно которому потребитель электроэнергии не может производить энергии больше потребляемой, уходят в историю [3], [6].

Научно-технические достижения человечества – фантастика, которую теоретики приписывают себе, а экспериментаторы скромно молчат, являясь реальными авторами этих достижений. Новые экспериментальные данные увеличивают указанные разногласия. Наиболее значительные из них, как мы уже отметили и доказали, - в Динамике и Электродинамике [4].

Из первого закона динамики Ньютона следует, что если тело движется равномерно и прямолинейно, то сумма сил, действующих на него, равна нулю, а если тело вращается равномерно, то сумма моментов, действующих на него, также равна нулю.

Однако, автомобиль, проехав равномерно и прямолинейно, например, 10км., расходует бензин. В результате совершается работа, величину которой можно рассчитать теоретически. Или, если тело вращается равномерно, то на это вращение также расходуется энергия и её тоже можно рассчитать теоретически и определить экспериментально, а первый закон Ньютона отрицает это, утверждая, что сумма моментов, действующих на равномерно вращающееся тело, равна нулю. Это значит, что на равномерное вращение тела энергия не расходуется. Забавно получается, когда начинаешь осознавать, что эти фундаментальные теоретические противоречия спокойно живут столетия и заполняют головы учащейся молодёжи. Теоретики, вместо поиска причин этих противоречий, яростно доказывают их отсутствие [4].

В аналогичном положении находится и электродинамика. Её законы утверждают, что любой потребитель электрической энергии не может выработать её больше, чем получил от первичного источника питания [3]. Достоверность этого утверждения подтверждается всеми техническими устройствами, изобретёнными человеком до 2010г.

Первые в мире электромоторы - генераторы, изобретённые в России, показывают возможность получения дополнительной энергии. Электромотор – генератор МГ-1, проектировался для питания от сети. Однако, в процессе его испытаний выяснилось, что он может питаться и от аккумуляторов c общим напряжением гораздо меньшим напряжения сети (220В). Было принято решение испытать его в режиме, так называемого «вечного генератора». Первый пуск показал, что ток разрядки аккумуляторов почти в два раза больше тока их зарядки самим же генератором. Тем не менее, было принято решение не повышать ток зарядки, а испытать при тех параметрах, которые имелись.

Суть второго эксперимента по проверке возможности создания автономного источника энергии проста. Берём две группы из 4-х 12-ти вольтовых мотоциклетных аккумуляторов. Подаём из первой группы напряжение в обмотку возбуждения ротора МГ-1 импульсами (рис. 59). В ней формируются два импульса: ЭДС индукции и ЭДС самоиндукции. Снимаем эти импульсы и направляем на зарядку второй группы таких же аккумуляторов. При периодическом изменении процессов разрядки на процессы зарядки этих аккумуляторов, образуется автономный источник электроэнергии, в обмотке статора которого также формируются два электрических импульса: импульс ЭДС индукции и импульс ЭДС самоиндукции. Эти импульсы можно использовать на питание технологических процессов, например, процесса электролиза воды (рис. 59). Результаты эксперимента представлены в табл. 3. Ток разрядки аккумуляторов в начале эксперимента 0,42А, а ток зарядки – 0,21А.

Рис. 59. Фото электромотора - генератора МГ-1 без постороннего привода

Таблица 3. Результаты 70-ти часовых испытаний МГ-1

в режиме «вечного» электрогенератора

Часы

работы

Общее напряжение первой группы аккумуляторов, В

Общее напряжение второй группы аккумуляторов, В

Через 1 час

51,50-50,00 – разрядка

50,20-52,00 – зарядка

Через 10 часов

51,00-49,30 – разрядка

49,10-51,50– зарядка

Через 20 часов

48,60-50,50 – зарядка

50,00-48,40 - разрядка

Через 30 часов

49,70-48,00 - разрядка

48,00-50,10 - зарядка

Через 40 часов

49,50-47,30 - разрядка

49,90-47,50 - разрядка

Через 50 часов

46,90-48,90 - зарядка

49,30-46,80 - разрядка

Через 60 часов

48,60-46,10 - разрядка

48,90-46,10 - разрядка

Через 70 часов

41,80-47,70 - зарядка

48,20-41,40 - разрядка

За 70 часов получено 43 литра смеси газов водорода и кислорода (0,60л/час)

Причина разбалансировки процессов разрядки и зарядки аккумуляторов первой и второй групп следует из таблицы 3.

Таблица 4. Напряжение на клеммах аккумуляторов в режиме разрядки через 70 часов непрерывной работы

Первая группа аккумуляторов

Вторая группа аккумуляторов

Номера

аккумуляторов

Напряжение, В

Номера

аккумуляторов

Напряжение, В

1

11,03

5

11,40

2

11,57

6

11,47

3

7,99

7

10,77

4

11,64

8

11,74

Аккумуляторы № 1,2,4 – ОАО Тюменского аккумуляторного завода.

Аккумуляторы № 3, 5, 6, 7 и 8 – ОАО «Электроисточник» г. Саратов.

Средняя мощность на клеммах ячейки электролизёра была равна 0,31Вт. Удельные прямые затраты на получение одного литра смеси водорода и кислорода составили 0,31/0,60=0,52Втч/л.