- •20. Обмен дикарбоновых аминокислот. Роль этих аминокислот и их амидов в интеграции азотистого обмена в организме.
- •22. Переваривание белков в желудке.
- •23. Регуляция активности ферментов: химическая модификация фермента, аллостерическая регуляция.
- •25. Зависимость скорости ферментативных реакций от концентрации фермента, субстрата.
- •31. Транспортное рнк. Строение и функционирование тРнк в процессе биосинтеза белков.
- •26. Различия ферментного состава органов и тканей. Органоспецифические ферменты.
- •27. Ингибиторы ферментов: обратимые и необратимые.
- •29. Конкурентное ингибирование активности ферментов и использование этого метода в медицинской практике.
- •37. Витамин b2: биологическая роль, распространение в природе и суточная потребность.
- •38. Витамины. Классификация витаминов. Функции витаминов. Алиментарные и вторичные авитаминозы. Гипо- и гипервитаминозы.
- •39. Витамин д2 и д3 : строение, биологическая роль, распространение в природе.
- •40. Химический состав нервной ткани. Миелиновые мембраны: особенности состава и сруктуры.
- •21. Теория оперона. Функционирование оперона.
27. Ингибиторы ферментов: обратимые и необратимые.
Типы ингибирования. Различают обратимое и необратимое ингибиро-вание. Если ингибитор вызывает стойкие изменения пространственной третичной структуры молекулы фермента или модификацию функциональных групп фермента, то такой тип ингибирования называется необратимым. Чаще, однако, имеет место обратимое ингибирование, поддающееся количественному изучению на основе уравнения Михаэлиса-Ментен. Обратимое ингибирование в свою очередь разделяют на конкурентное и неконкурентное в зависимости от того, удается или не удается преодолеть торможение ферментативной реакции путем увеличения концентрации субстрата. Конкурентное ингибирование может быть вызвано веществами, имеющими структуру, похожую на структуру субстрата, но несколько отличающуюся от структуры истинного субстрата. Такое ингибирование основано на связывании ингибитора с субстратсвязывающим (активным) центром. Классическим примером подобного типа ингибирования является торможение сукцинатдегидрогеназы (СДГ) малоновой кислотой. Этот фермент катализирует окисление путем дегидрирования янтарной кислоты (сукцината) в фумаровую*. Если в среду добавить малонат (ингибитор), то в результате структурного сходства его с истинным субстратом сукцинатом (наличие двух таких же ионизированных карбоксильных групп), он будет взаимодействовать с активным центром с образованием фермент-ингибиторного комплекса, однако при этом полностью исключается перенос атома водорода от малоната. Структуры субстрата (сукцинат) и ингибитора (малонат) все же несколько различаются. Поэтому они конкурируют за связывание с активным центром, и степень торможения будет определяться соотношением концентраций малоната и сукцината, а не абсолютной концентрацией ингибитора. Таким образом, ингибитор может обратимо связываться с ферментом, образуя фермент-ингибиторный комплекс. Этот тип ингибирования иногда называют ингибированием по типу метаболического антагонизма. В общей форме реакция взаимодействия ингибитора с ферментом может быть представлена следующим уравнением:* Образовавшийся комплекс, называемый фермент-ингибиторным комплексом El, в отличие от фермент-субстратного комплекса ES не распадается с образованием продуктов реакции. Константу диссоциации комплекса El, или ингибиторную константу Кi, можно, следуя теории Михаэлиса-Ментен, определить как отношение констант обратной и прямой реакций:* т.е. ингибиторная константа прямо пропорциональна произведению концентрации фермента и ингибитора и обратно пропорциональна концентрации комплекса El.
28. ФАД - зависимые дегидрогеназы: сукцинатдегидрогеназы. Путь водорода и электронов в дыхательной цепи.
Во флавиновых коферментах (ФАД или ФМН), активной частью молекул которых является изоаллоксазиновое кольцо, в результате восстановления чаще всего наблюдается присоединение 2 протонов и 2 электронов одновременно: * Восстановленные формы этих кофакторов способны транспортировать водород и электроны к дыхательной цепи митохондрий или иных энергосопрягающих мембран. Организация и функционирование дыхательной цепи. В клетках эукариот дыхательная цепь расположена во внутренней мембране митохондрий, у дышащих бактерий - в цитоплазматической мембране и специализированных структурах- мезосомах, или тилакоидах. Компоненты дыхательной цепи митохондрий в порядке убывания окислительно-восстановительного потенциала можно расположить. KoQ10. оказался обязательным компонентом дыхательной цепи: осуществляет в митохондриях перенос электронов от мембранных дегидрогеназ (в частности, НАДН-дегидрогеназы дыхательной цепи, СДГ и т.д.) на цитохромы. Таким образом, если никотинамидные коферменты участвуют в транспорте электронов и водорода между водорастворимыми ферментами, то KoQ10 благодаря своей растворимости в жирах осуществляет такой перенос в гидрофобной митохондриальной мембране. Пластихиноны выполняют аналогичную функцию переносчиков при транспорте электронов в процессе фотосинтеза. В организме человека KoQ может синтезироваться из мевалоновой кислоты и продуктов обмена фенилаланина и тирозина.
30. НАД – зависимые дегидрогеназы. Строение окисной и восстановительной формы.
Потребление кислорода тканями зависит от интенсивности реакций тканевого дыхания. Наибольшей скоростью тканевого дыхания характеризуются почки, мозг, печень, наименьшей- кожа, мышечная ткань (в покое). Уравнение (2) описывает суммарный результат многоступенчатого процесса, приводящего к образованию молочной кислоты (см. главу 10) и протекающего без участия кислорода: С6Н12О6 = 2С3Н6О3 + 65 кДж/моль. Использование клетками кислорода открывает возможности для более полного окисления субстратов. В аэробных условиях продукты бескислородного окисления становятся субстратами цикла трикарбоновых кислот (см. главу 10), в ходе которого образуются восстановленные дыхательные переносчики НАДФН, НАДН и флавиновые коферменты. Способность НАД+ и НАДФ + играть роль промежуточного переносчика водорода связана с наличием в их структуре амида никотиновой кислоты. При взаимодействии этих кофакторов с атомами водорода имеет место обратимое гидрирование (присоединение атомов водорода):* При этом в молекулу НАД+ (НАДФ +) включаются 2 электрона и один протон, а второй протон остается в среде. Окислительное фосфорилирование и дыхательный контроль. Функция дыхательной цепи - утилизация восстановленных дыхательных переносчиков, образующихся в реакциях метаболического окисления субстратов (главным образом в цикле трикарбоновых кислот). Каждая окислительная реакция в соответствии с величиной высвобождаемой энергии «обслуживается» соответствующим дыхательным переносчиком: НАДФ, НАД или ФАД. Соответственно своим окислительно-восстановительным потенциалам эти соединения в восстановленной форме подключаются к дыхательной цепи. В дыхательной цепи происходит дискриминация протонов и электронов: в то время как протоны переносятся через мембрану, создавая DрН, электроны движутся по цепи переносчиков от убихинола к цитохромоксидазе, генерируя разность электрических потенциалов, необходимую для образования АТФ протонной АТФ-синтазой. Таким образом, тканевое дыхание «заряжает» митохондриальную мембрану, а окислительное фосфорилирование «разряжает» ее.
