
- •1. Основные принципы построения систем физической защиты
- •Современные объекты телекоммуникации и связи
- •Классификация объектов
- •1.2. Основные угрозы объектам телекоммуникации и связи. Модели угроз и нарушителей
- •Концепция физической безопасности объектов
- •1.4. Состав и структура cфз объектов. Основные требования к сфз
- •1.5. Критерий и оценка эффективности сфз
- •2. Комплексы инженерно-технических средств охраны
- •Задачи инженерно-технических комплексов
- •2.2. Физические барьеры периметров
- •2.3. Система охранной сигнализации. Структура и принципы построения
- •Соединение станционной аппаратуры с со
- •Соединение станционной аппаратуры с пб и со
- •Станционной аппаратуры с пб и со
- •Наблюдением
- •2.4. Периметральные средства охраны
- •Датчика – декоративный козырек на бетонной стене
- •И анализаторвибросейсмической периметральной системы Psicon фирмы Geoquip (Великобритания)
- •2.5. Извещатели для охраны помещений
- •Блокирования окна и стены
- •Основные технические характеристики
- •Основные технические параметры и характеристики
- •Основные технические параметры и характеристики
- •Извещателя с выносными дрд
- •Вибрационного извещателя
- •Примененияультразвукового извещателядля охраны музейной ценности
- •Типа «занавес»
- •Извещателя
- •Охранный извещатель пик
- •Комбинированного датчика движения
- •2.6. Способы передачи информации отизвещателей
- •Приемно-контрольные приборы(концентраторы)
- •Нему внешними цепями:
- •2.8. Стандартизация систем охранной сигнализации
- •Нормативные и руководящие документы
- •2.9. Тенденции развития систем охранной
- •3. Системы видеонаблюдения
- •3.1. Цели, задачи и структура системвидеонаблюдения объектов
- •3.2. Телевизионные камеры: принцип действия,
- •3.2. Телевизионные камеры: принцип действия,
- •Формата 1/3
- •3.3. Объективы: основные параметры и
- •Рису.3.15. Peгулиpовкa диaфpaгмы объeктивa
- •3.4. Мониторы: основные параметры и
- •3.5. Устройства обработки изображения
- •Одному источнику сигнала
- •3.6. Видеодетектор движения
- •3.7. Видеомагнитофоны и видеорегистраторы
- •3.8. Вспомогательные элементы систем
- •Инфракрасной подсветки
- •Устройство
- •3.9. Цифровые (компьютерные) системы
- •Система видеоконтроля
- •3.10. Стандартизация и сертификация средств
- •4. Системы контроля и управления
- •4.1. Системы контроля и управления доступом
- •4.2. Устройства идентификации
- •Доcтоинcтвa и нeдоcтaтки paзличныx тexнологий идeнтификaции
- •Характеристики usb-ключей
- •4.3. Биометрические устройства идентификации
- •4.4. Исполнительные устройства скуд
- •4.5. Системы контроля материалов и взрывчатых
- •4.6. Интегрированные системы безопасности
- •4.7. Стандартизация и сертификация скуд
- •5. Обеспечивающие системы
- •5.1. Системы бесперебойного питания
- •5.2. Системы оперативной связи
- •5.3. Системы оповещения
- •Конференц-зала
- •5.4. Системы охранного освещения
- •Официальные документы
- •Основные государственные стандарты и
- •Монографии, учебники и учебные пособия
- •Статьи в журналах и на сайтах в Интернете
У
Рис.2.23. Пример
Примененияультразвукового извещателядля охраны музейной ценности
З-датчиков
Выпускаются модификации как для охраны помещений (рис.2.22), так и для охраны витрин (рис.2.23).
Радиоволновые (микроволновые) датчики. Принцип действия микроволнового активного метода обнаружения основан на излучении в окружающее пространство электромагнитного поля СВЧ диапазона и регистрации его изменений, вызванных отражением от нарушителя, движущегося в зоне чувствительности датчика. Микроволновые активные датчики, реализующие этот метод, относятся к классу детекторов движения.
Микроволновые датчики состоят из следующих основных элементов:
СВЧ генератора;
антенной системы, создающей электромагнитное поле в окружающем пространстве, принимающей отраженные сигналы, формирующей диаграмму направленности датчика и определяющей форму пространственной зоны чувствительности;
СВЧ приемника, регистрирующего изменение характеристик принятого сигнала;
блока обработки, выделяющего сигналы, обусловленные движущимся человеком, на фоне помех.
Генератор микроволнового датчика предназначен для формирования СВЧ сигнала – обычно в 3-сантиметровом диапазоне длин волн (10...11 ГГц), в последнее время производителями датчиков начали осваиваться и более коротковолновые диапазоны (24...25 ГГц). Первоначально в микроволновых датчиках использовались генераторы на диодах Ганна, в настоящее время производители перешли на транзисторные генераторы. Современные СВЧ генераторы позволяют формировать стабильный сигнал с требуемыми характеристиками при малых габаритах и низком потреблении.
В качестве антенной системы в микроволновых датчиках обычно используется единственная совмещенная приемо-передающая антенна. В большинстве современных датчиков применяются микрополосковые антенны, обладающие меньшими габаритами, весом и стоимостью по сравнению с широко использовавшимися ранее рупорными антеннами. Однако рупорные антенны продолжают применяться некоторыми производителями датчиков и в настоящее время, так как обеспечивают несколько более высокую точность формирования диаграммы направленности.
Конфигурация зоны чувствительности микроволновых датчиков представляет собой объемное тело, напоминающее по форме эллипсоид. В идеале от антенной системы требуется излучение (и, соответственно, прием) только в переднее полупространство без заметного заднего и бокового излучения (с целью минимизации ложных срабатываний). Зона чувствительности, формируемая реальной антенной системой, отличается от идеальной – из-за заднего и бокового излучения/приема. При расположении датчика в помещении форма зоны чувствительности существенно искажается. Из-за отражения от ограждающих конструкций (коэффициент отражения по полю от кирпичных и железобетонных стен составляет 0,3...0,6) электромагнитное поле "заполняет" с большей или меньшей степенью равномерности практически все помещение, если размеры этого помещения не превышают размеры зоны чувствительности. С другой стороны, тонкие перегородки из легких материалов, деревянные двери, стекла, шторы не являются существенной преградой для электромагнитного поля, поэтому зона чувствительности может распространяться и за пределы охраняемого помещения, что может привести к ложным срабатываниям, например при проходе людей по коридору или проезде транспорта у окон первого этажа. В то же время, крупногабаритные предметы (шкафы, сейфы и т.п.), находящиеся в помещении, создают "тени" (зоны нечувствительности). Все это должно учитываться при выборе места установки и количества используемых датчиков.
Перемещение нарушителя приводит к появлению изменяющегося во времени отраженного сигнала. Здесь различают два эффекта: изменение пространственной картины стоячих волн и частотный сдвиг отраженной от движущегося человека волны (эффект Доплера). Микроволновые датчики, основанные на регистрации первого эффекта, называются амплитудно-модуляционными, второго – доплеровскими. Вообще говоря, оба этих эффекта неразрывно связаны, имеют общую природу и одинаковое проявление и поэтому практически неразделимы.
Н
Рис.2.24. Варианты
блокирования помещения спомощью
радиоволнового датчика
Однако в связи с высокой чувствительностью и тем фактом, что микроволновое излучение проникает через предметы, источниками ложных срабатываний извещателей могут быть, например:
установочная арматура включенных ламп дневного света;
работающее электрооборудование, создающее вибрацию;
потоки дождевой воды на стеклах;
движение воды в пластиковых трубах;
мелкие животные и птицы.
Вариант установки радиоволнового извещателя представлен на рис.2.24, технические параметры некоторых извещателей приведены в табл.2.4.
Инфракрасные извещатели. Пассивные инфракрасные (ПИК в рускоязычной или PIR в англоязычной литературе) извещатели – один из самых распространенных типов охранных извещателей. Принцип действия основан на регистрации изменений потока теплового излучения, возникающих при пересечении человеком чувствительных зон, преобразовании ИК излучения в электрический сигнал и проведении анализа сигнала по амплитуде и времени. В простых ПИК извещателях обработка сигнала производится аналоговыми методами, в более сложных – цифровыми с помощью встроенного процессора. Форма зоны обнаружения формируется линзой Френеля; различают объемную, линейную или поверхностную зоны обнаружения (рис.2.25 – 2.27).
ПИК извещатели бывают как настенными, так и потолочными. Настенный – самый распространенный тип установки. В комплект некоторых извещателей уже входят кронштейны, которые позволяют ориентировать датчик в нужном направлении. У большинства есть возможность осуществления монтажа в углу помещения без кронштейна.
Потолочный тип извещателей обычно применяется в малогабаритных помещениях или там, где существуют препятствия для горизонтального распространения инфракрасных лучей. Диаграмма зоны обнаружения одного из потолочных ПИК извещателей показан на рис.2.29.
Таблица 2.4
Технические параметры некоторых извещателей
Характеристика |
Аргус-2 |
Аргус-3 |
Волна-5 |
Тюльпан-3 |
Максимальная дальность действия, м |
от 2...4 до 12...16 |
от 2...3 до 6...7,5 |
от 2...4 до 12...16 |
от 1,5...3,5 до 15...17 |
Ширина зоны при наибольшей дальности, м |
6...8 |
3...4 |
6 |
12...13 |
Высота зоны чувствительности при наибольшей максимальной дальности, м |
4...5 |
2...3 |
8 |
7...8 |
Угол обзора в градусах в горизонтальной плоскости, в вертикальной плоскости |
100
75 |
80...110
45...75 |
|
100
60 |
Контролируемая площадь, м2 |
90 |
25 |
90 |
90 |
Контролируемый объем, м3 |
200 |
40 |
|
250 |
Диапазон обнаруживаемых скоростей перемещения, м/с |
0,3...3 |
0,3...3 |
0,3...3 |
0,3...3 |
Напряжение питания, В |
10,2...15 |
10,2...15 |
10...72 |
10,2...24 |
Потребляемый ток, мА |
16 |
30 |
70 |
|
Диапазон рабочих температур, 0С |
-30...+50 |
-10...+50 |
-30...+50 |
-30...+50 |
Габариты, мм3 |
98х85х62 |
90х75х40 |
98х85х62 |
90х75х40 |
Масса, г |
250 |
100 |
200 |
250 |
Рис.2.25. Объемная форма зоны обнаружения
Рис.2.26. Линейная форма зоны обнаружения типа «коридор»
Рис.2.27. Поверхностная форма зоны обнаружения